
Efeu: generating efficient, verified, hybrid
hardware/software drivers for I2C devices

Daniel Schwyn∗
daniel.schwyn@inf.ethz.ch

ETH Zurich
Zurich, Switzerland

Zikai Liu∗
zikai.liu@inf.ethz.ch

ETH Zurich
Zurich, Switzerland

Timothy Roscoe
troscoe@inf.ethz.ch

ETH Zurich
Zurich, Switzerland

Abstract
Writing device drivers is notoriously hard, and driver bugs
are a major cause of system failures and vulnerabilities. The
problem is particularly acute in bus-based protocols like
I2C, where driver correctness is only half the story: correct
functioning of the complete subsystem depends on all com-
ponents on the bus interoperating correctly. Unfortunately,
developers cannot control all aspects of a platform, and must
interact with existing devices (peripherals and/or hardware
bus controllers) which may misbehave. Failures in a protocol
like I2C, often used in critical low-level system management,
can result in permanent damage to the hardware, whether a
server or a satellite.
Existing techniques for creating high assurance drivers

rarely tackle this interoperability issue. We present Efeu, a
framework for implementing verifiably interoperable drivers
for I2C devices. Using model checking-based verification,
Efeu generates driver implementations in software, recon-
figurable logic for FPGAs, and, notably, combinations of both.
The split between software and hardware can be varied at
implementation time and the hardware/software interface is
generated automatically, enabling efficient exploration of the
design space. Using Efeu, we design and evaluate a verified
I2C driver stack, and demonstrate that Efeu finds optimal
hardware/software tradeoffs to favor either throughput, CPU
usage or FPGA footprint. For each objective, Efeu generates
drivers with performance comparable with hand-optimized
hardware/software drivers.

CCS Concepts: • Software and its engineering→ Input /
output;Model checking; Domain specific languages; Source
code generation; • Hardware → Buses and high-speed
links; Model checking; Reconfigurable logic and FPGAs.

∗Both authors contributed equally to this research.

EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Twentieth European Conference on Computer Systems (EuroSys ’25), March
30–April 3, 2025, Rotterdam, Netherlands, https://doi.org/10.1145/3689031.
3696093.

Keywords: I2C, interoperability, verified drivers

ACM Reference Format:
Daniel Schwyn, Zikai Liu, and Timothy Roscoe. 2025. Efeu: gen-
erating efficient, verified, hybrid hardware/software drivers for
I2C devices. In Twentieth European Conference on Computer Sys-
tems (EuroSys ’25), March 30–April 3, 2025, Rotterdam, Netherlands.
ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3689031.
3696093

1 Introduction
Wepresent Efeu, a system for generating drivers for complete
I2C subsystems from formal specifications. The resulting soft-
ware stacks are suitable for server Baseboard Management
Controllers (BMCs), embedded controllers in mobile phone
systems-on-chip (SoCs), or resource-constrained Internet-
of-Things (IoT) devices. Moreover, the I2C drivers are high-
performance and verified to behave correctly using a model
checker, even when the system includes devices which do
not correctly follow the I2C standard. Finally, the generated
drivers can be in C, or Verilog for FPGAs, or a hybrid of the
two, enabling efficient determination of the optimal hard-
ware/software split for a given platform.

The I2C protocol (short for Inter-Integrated Circuit) is
at the heart of almost all modern computer systems and
critical to their correct behavior. Bugs in I2C can result in
inefficiencies in energy usage, hardware lockups, and in some
cases permanent hardware damage. A correct I2C network
within a phone or server is essential.

At the same time, I2C has features that make creating high-
assurance driver software particularly challenging. It is a bus-
based protocol but unlike, say, PCIe or USB it does not feature
hardware facilities for isolation. This means that a bug in the
driver for a single device can disable the entire subsystem
at runtime. Unfortunately, an I2C subsystem for a typical
machine includes dozens of devices from many vendors,
which (like PCIe) often exhibit quirks: deviations from the
standard which can confuse other devices or controllers.

For this reason, hardware I2C controllers may interoperate
with only a limited number of empirically compatible devices,
and are frequently replaced with “bit-banging” drivers which
directly manipulate bus signals from handwritten software.
This impairs protocol performance, increases CPU load, and
reduces energy efficiency.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-4412-9004
https://orcid.org/0009-0000-5411-9785
https://orcid.org/0000-0002-8298-1126
https://doi.org/10.1145/3689031.3696093
https://doi.org/10.1145/3689031.3696093
https://doi.org/10.1145/3689031.3696093
https://doi.org/10.1145/3689031.3696093


EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

Despite this, the design and implementation of a trustwor-
thy I2C software stack has received relatively little attention
from the research community. Efeu addresses this challenge.

Efeu provides a language for specifying I2C devices, which
includes the ability to express known deviations from the
protocol (quirks) by the devices. A complete hardware plat-
form’s I2C network can be expressed by composing such
specifications within the language.
The Efeu compiler can then generate a driver for the I2C

host controller together with drivers for the all the attached
devices. This generated driver suite can be in C, or alter-
natively in Verilog for synthesis onto an ASIC or FPGA,
increasingly used for server board management controllers.

Crucially, the Efeu compiler can place boundaries between
generated software and hardware functionality between any
two layers in the I2C protocol stack. In its simplest form, this
enables the optimal split between hardware and software
implementation to be empirically determined, without writ-
ing any additional code. It can also be used for debugging,
for example by replacing an optimized hardware layer with
a more instrumented software layer.
The Efeu compiler also generates a specification of the

complete I2C subsystem (with quirks) in Promela [23], allow-
ing correctness to be model-checked using SPIN [28].
This is our second attempt at engineering verified I2C

stacks, following a somewhat simpler previous approach [30].
Efeu uses the same Promela specifications that the lower 3
layers (Symbol, Byte, Transaction) of the I2C stack are ver-
ified against, but is otherwise completely new. In contrast
to our previous approach, Efeu is designed to enable the
verification of realistic I2C topologies with multiple attached
devices, and targets the generation of both realistic software
and hardware components for implementing efficient, usable
I2C stacks. We provide a detailed evaluation of the verifi-
cation and driver performance in section 4 and section 5
respectively.

In the next section, we elaborate on why I2Cmatters, what
makes it different from driver assurance for interconnects
like PCIe and USB, and the canonical structure of an I2C stack.
Following this, in section 3, we describe the Efeu language,
compiler, and verifier, and how it addresses the challenges
we have laid out. In section 4 we explain how the I2C stack
is model checked, and show that it can be done in practical
time, and in section 5 we show that Efeu allows a range of
different trade-offs in hardware/software implementations
to be generated from the specification of a real hardware plat-
form, and also that the resulting drivers are comparable with
hand-tuned software and hardware in terms of throughput,
CPU cycles, and hardware footprint. We survey the broader
landscape of high-assurance device drivers in section 6, and
conclude in section 7.

EepDriver 

Transaction 
Issue read transaction,
Issue write transaction

Byte 
Start, Stop, Read byte, Write byte,
ACK, NACK, Idle

START, STOP, BIT0, BIT1,
Stretch, IdleSymbol 

Read EEPROM, Write EEPROM

Controller ResponderOperations

Electrical

Figure 1. The I2C stack with an EEPROM driver as an ex-
ample application.

2 Background and problem statement
In this paper, we address how to create high-performance,
correct driver stacks for bus-based devices, in particular those
using I2C. By high-performance, we mean competitive with
state-of-the-art handwritten drivers in terms of throughput,
latency, and CPU usage. By correct, we mean that the driver
is proven to function as specified and not interfere with other
devices sharing the bus.

Driver defects have long been identified as a major cause
of system failures and vulnerabilities [11, 26, 56], resulting in
much work on improving driver assurance via synthesis of
drivers from specifications, post-hoc verification of manually
written drivers, and formally-derived hardware/software co-
design. We survey this work in section 6, but focus here on
what makes the high-assurance I2C case different.

2.1 The importance of I2C and related protocols
Despite receiving much less attention in the literature than
devices using, e.g. PCIe or USB, I2C and related protocols
SMBus [62] and PMBus [67, 68] are fundamental to the oper-
ation of almost all computers today, from small IoT devices
through mobile phone SoCs and platforms to large-scale
servers and rack-scale systems [78].

Whether controlled by the conventional OS kernel, or by
“hidden” parts of the de facto OS [25] like monitor code or
BMCfirmware, I2C is the base protocol used to control almost
all the components of a machine: configuring voltage and
clock frequency, monitoring temperature and power, etc. I2C
bugs lead to board lockups, pathological power inefficiencies,
or at worst hardware damage [1, 8, 10]. Hardware confers
great privilege on the software stack controlling the I2C bus
in a machine; indeed, this is a security concern in its own
right, a topic we return to in section 7.

2.2 What makes I2C different?
I2C [53] is a serial bus protocol using two wires, the serial
clock line (SCL) and the serial data line (SDA). An I2C device



Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

is either a controller or a responder1 (Figure 1). Controllers
initiate and control data transfers between themselves and
responders, identified by 7-bit addresses. An additional bit
distinguishes read transfers (a responder transmits data to
the controller) and write transfers (the controller transmits
data). SDA is driven by the transmitting device while SCL
is normally only driven by controllers, but responders can
“stretch” the SCL clock if they cannot keep up.

What makes I2C specifically challenging is the need for in-
teroperability. I2C connects many components in an SoC or
motherboard, and these are designed and supplied by many
different vendors. A correctly I2C functioning subsystem de-
pends not only on the driver for each individual device being
correct, but also on all the devices and drivers interoperating
correctly.
Of course, interoperability is not a challenge restricted

to I2C– USB and PCIe devices must also work together, for
example. However, both USB and PCIe controllers by design
provide isolation in hardware between devices, such that
drivers do not need to be aware of the whole protocol stack.
Even so, deviations from standards are common: the Linux
kernel contains over 6000 lines of code for handling so-called
quirks [21, 63] in PCI(e) devices alone.

Interoperability is different for I2C devices. The bus-based
nature of the protocol means that a misbehaving device
or controller can prevent all other I2C devices on the bus
from functioning. A single driver bug can render the entire
I2C bus unusable. Unfortunately, like PCIe, numerous I2C
devices have quirks [2, 52]. For example, the KS0127 video
decoder [60] expects the “stop streaming data” command
to appear in a non-standard position [20] and block the bus
indefinitely if the controller is unaware of this.
This means that a “one-driver-one-device” approach to

high-assurance drivers is insufficient. It also means that any
formal approach must be able to handle device quirks.

Moreover, in practice I2C controllers are often implemented
in software. A hardware implementation is usually provided,
but generally unused due to a lack of confidence in inter-
operability. The Raspberry Pi I2C controller, for example,
does not correctly handle clock stretching. Controller and
responders can thus desynchronize, leading to lockups and
data corruption [49]. This issue is not a driver bug in the
traditional sense: the I2C controller driver can correctly pro-
gram the controller and, as long as no responder uses clock
stretching, the system works correctly.
Consequently, many I2C controllers consist of low-level

“bit banging” software directly driving the SCL and SDA sig-
nals, even if a hardware controller is available. This allows
post-hoc workarounds for quirks, but has a cost. While I2C
bandwidth requirements are relatively modest this still re-
sults in slowdown (see section 5.2) and the heavy use of
CPU cycles (and associated energy) becomes an issue for

1The standard refers to them as “master” and “slave”

low-end embedded devices. Recently, some vendors have
proposed using reconfigurable logic to help with I2C func-
tionality [24, 65].
The bug in the Raspberry Pi also shows that relying on

hardware manufacturers to fix bugs once discovered is not
a solution: the bug was originally discovered in the first
Raspberry Pi model in 2013. Newer models released in 2020
are however still affected by it [33].

2.3 The I2C protocol stack and ecosystem
Wenow describe the I2C protocol from bottom up (paraphras-
ing the standard [53]), alongside our model of the protocol
(Figure 1). We show a complete, end-to-end example in Fig-
ure 2. Both controllers and responders have the same layers
described below, but differ in their implementations.

At the Electrical layer, both SCL and SDA have exter-
nal pull-up resistors, and devices may only drive the lines
low. Multiple clock speeds are defined, but we target the
commonly used Fast Mode (400 kbit/s, or 400 kHz SCL). In
the Efeu model, the Electrical layer represents the levels
with 0 and 1 and models the pull-down behavior with bit
operations. We do not model the precise bus timing, but as-
sume a bus adapter that translates bits into half cycles on the
bus, allowing the stack to work with discrete time. Currently,
this adapter is written by hand, but could be synthesized
using an approach like Chinook [14].

The Symbol layer converts between I2C symbols (START,
STOP, BIT0, and BIT1) and the SCL and SDA electrical levels
using the encoding in Figure 2. Two further operations, IDLE
and STRETCH, are defined: IDLE is a no-op to the bus, and
STRETCH performs clock stretching, pulling SCL low for one
cycle. This is the only operation with which a responder can
drive SCL. Otherwise, responders passively respond to clock
cycles. In our model, controllers handle clock stretching at
the Symbol layer, waiting for its completion before returning
to the upper layers.

I2C is byte-oriented. The Byte layer encodes and decodes
bytes to and from bits, as well as acknowledging each byte
or not: ACK is encoded to the BIT0 symbol and NACK to
BIT1. Byte also detects arbitration loss if multiple controllers
collide on the bus, reporting this upwards.

Above this at the Transaction layer, an I2C transaction
starts with a START symbol, the 7-bit target device address,
and a read/write bit. Payload bytes follow, supplied by either
the controller or the responder depending on the transaction
type and are ACKed or NACKed by the receiving device.
A transaction is terminated by a STOP symbol, or another
START – known as a repeated START – in which case the
controller keeps the bus busy without releasing it.
The top layer is specific to a responding device class. In

this paper, we use the EepDriver layer as a running exam-
ple, modeling a byte-addressable EEPROM, the Microchip
24AA512 [51]. The controller EepDriver issues transactions



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

EEPROM Write EEPROM offset (2 bytes) Read 1 byte at the offset STOP

Transaction START I2C address W ACK Offset high ACK Offset low ACK START I2C address R ACK Byte NACK STOP

SDA

SCL

Figure 2. Timing diagram of a 1-byte read at a given EEPROM offset. SDA is driven either by the controller (blue) or the
responder (yellow) in a cycle. SCL is always driven by the controller. Dashed levels indicate more than one cycle.

Verifier ESMESI

Model checked and
revised by the user

Promela
model

C MMIO
driver

AXI Lite
driver

Verilogmain()
Other
HDL
code

C backend
MMIO-AXI Lite backend

HDL backend

Promela backend

Implementation
specification

Software implementation Hardware implementation

+

Generated

Written

Figure 3. Efeu workflow.

to perform EEPROM operations. To write data to the EEP-
ROM, a write transaction is issued with a two-byte data
offset followed by the payload bytes to write starting from
the offset. To read data from the EEPROM, EepDriver first
issues a write transaction carrying the data offset, followed
immediately by a read request to stream out data starting
from the offset. Figure 2 shows the timing diagram of reading
1 byte from an offset.

3 Efeu design and implementation
Theworkflow of Efeu is shown in Figure 3: a developer writes
the implementation specification (devices and topology) of
the platform, and Efeu translates it into a Promela model for
model checking and iterative refinement. When they are sat-
isfied with the specification, Efeu generates implementations
in C and Verilog.

3.1 Specifying the driver stack
The structure of Efeu specifications follows the one we devel-
oped in previous work [30]: developers write specifications
top-down, first declaring layers and then defining each of
them as an indefinitely-running finite state machine (FSM).
The layered structure makes components reusable across
specifications (see section 4).

Some design decisions in our previous approachwere how-
ever unsuitable for generating real-world drivers. A major

1 layer CTransaction;

2 layer CEepDriver;

3
4 enum CTAction {

5 CT_ACT_WRITE ,

6 CT_ACT_READ ,

7 CT_ACT_STOP ,

8 CT_ACT_IDLE ,

9 };

10
11 enum CTResult {

12 CT_RES_OK ,

13 CT_RES_FAIL ,

14 CT_RES_NACK ,

15 };

16 interface <CTransaction ,

17 CEepDriver > {

18 <= {

19 CTAction action;

20 u8 addr;

21 u8 length;

22 u8 data [16];

23 },

24 => {

25 CTResult res;

26 u8 length;

27 u8 data [16];

28 }

29 };

Figure 4. ESI for a controller Transaction and EepDriver
layers and their interface. “<=” shows a channel from the
CEepDriver to CTransaction, and vice versa.

one was to fix the direction of communication between lay-
ers at specification time: the layer that calls another layer
initiates communication and the other layer responds by
yielding. As we detail in section 3.3, this lacks the flexibility
needed in real world settings. Communication primitives in
Efeu specifications are therefore symmetric, and the compiler
chooses a suitable implementation for the desired scenario.
To enable this, the layer declarations also need to include
interface declarations. We developed a new lightweight do-
main specific language (DSL) for this called ESI (Efeu System
Information).

Figure 4 shows an ESI example of controller Transaction
and EepDriver layers and the interface connecting them. In-
terfaces consist of a channel in each direction. In a channel,
each data field has a type and a name. Supported types in-
clude bit/bool, unsigned byte (u8), 16-bit and 32-bit integers
(i16 and i32), enumerations, and 1-dimensional arrays.

Layers are then specified as FSMs in another DSL. In our
previous approach [30] we focused on verification and de-
signed the specification language to be easy to translate to
Promela. As the new communication model in Efeu required
us to change the specification language for layers anyway,
we decided to instead make it resemble a subset of C. This im-
proves its usability for writing specifications of real systems
by allowing existing tools like syntax highlighting, format-
ting and static checking to be reused. The new DSL is called
ESM (Efeu State Machine) and differs from C as follows:



Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

• The only built-in types are bit and bool (one-bit),
byte (or unsigned char), short and int.

• ESI Interface definitions become structs; no other
struct definition is allowed.

• ESI enumerations become C enums; other enums are
allowed, but unlike C, corresponding integer values
may not be specified.

• Only the unary operators plus (+), negate (-), bitwise
not (~), and boolean not (!) are supported.

• The only control flow statements supported are if,
while, and goto.

• Each layer is an indefinitely-running function without
return. No other function definitions are allowed.

• Promela [23] reserved words like len and timeout are
also reserved in ESM.

• Otherwise, ESM supports no pointers, global variables,
functions, or variable initialization at declaration time.

Within each layer function, two language primitives, talk
and read, are used to communicate with adjacent layers.
Their function stubs are generated by the Efeu compiler.
Given two adjacent layers A and B, A talk B is a blocking
round-trip communication over the interface between A and
B resembling two coroutine switches [39, 48]: values are sent
from A to B, and the operation continues in Awhen B issues a
corresponding B talk A with return values. A read B only
differs in that no initial values are passed to B but A waiting
for synchronization.

3.2 Efeu compiler overview
The Efeu compiler ESMC compiles ESI and ESM code to
various targets: Promela code for model checking, C code
for software drivers, and/or Verilog code for hardware dri-
vers. Previous work pioneers translating C-like languages to
Promela [29, 32] and Verilog [31, 44, 46, 57]. Efeu adopts the
idea but apply it to a single unified specification language.
ESMC is built on Clang/LLVM [42, 69, 73] and leverages

existing components. ESMC adds 7823 lines of C++ code
(excluding blank lines and comments) to Clang/LLVM, to-
gether with 136 system tests to cover this code. ESI files
use a custom lexer/parser into an internal representation.
ESM code is processed by the Clang frontend, which per-
forms type checking and constructs an abstract syntax tree
(AST). Any errors, warnings and/or comments are reported
to the user in a readable format through the Clang diagno-
sis engine [70]. By reusing Clang, ESMC inherits formatted
diagnostic messages and C preprocessor support, enabling
conditional compilation, compile-time polymorphism, and
modular design. The backends operate on the Clang AST.

3.3 C backend
Efeu generates C that can then be compiled into executa-
bles or libraries. Recall that in ESM, layers are indefinitely-
running FSMswritten as functionswithout return. A straight-
forward implementation option would transform these func-
tions into threads and the talk/read operations into inter-
thread communication, but this introduces scheduling over-
head and dependence on the OS-specific thread implementa-
tion.
Instead, we implement layers as stack-based coroutines

purely in Cwith minimal runtime support required, ensuring
portability across systems and highly efficient switching
between layers.

In principle, to implement two connected layers as stack-
based coroutines, either one can be the callee. However, in
real applications, as generated drivers are integrated with
the rest of the OS, the choice of which layers become callees
affects the usability of the generated code. We therefore
introduce the concept of a call graph in the C backend and
allow the developer to specify an entry point to this graph
at compile time, which the compiler provides a function
interface to.

Figure 5 shows three examples. In the leftmost one, when
the generated code is intended to be used as a driver library,
it is naturally invoked with the entry point as a top-level
function. Efeu performs a depth-first search (DFS) on an
undirected graph where nodes are the layers and edges are
the connections. The talk/read operations on the forward
edges become function calls, and the reversed ones become
continuations. Code generated in this way can be directly
compiled into a usable library. The second example shows
the ideal graph when the generated code is used as a part of
a server process in the OS: an event loop (“callee” of the OS
scheduler) reads values from the bus driver, invokes the stack
from the bottom, reads the next electrical levels to write to
the bus, and sends them to the physical bus driver. The third
example is a command-line simulator of one controller and
one responder. The Electrical layer is called by an infinite
loop. The top layer of the controller reads inputs from the
user, which go through the whole stack, and the results are
printed at the top layer of the responder.
Given a call graph, talk and read operations become

function calls and continuation calls. Figure 6 shows a talk
operation. To pass values between layers, function (layer)
signatures are also transformed. When a layer is a callee in
one connected pair, it passes input values from the other
layer by value, and output values by reference (as pointers).
The transformations use the Clang Rewriter [71]. Other parts
of code remain unchanged as they are already valid C.

3.4 Verilog backend
Efeu also generates Verilog for programmable logic like FP-
GAs. The backend reuses more of the Clang/LLVM pipeline.



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

EepDriver

Transaction

Byte

Symbol

Bit-banging

Top-down:
driver library

Controller

Continuation

EepDriver

Transaction

Byte

Symbol

Event loop

Lib entry Mutex

EepDriver

Transaction

Byte

Symbol

scanf

EepDriver

Transaction

Byte

Symbol

printf

Electrical

Responder Controller Responder

Bottom-up:
server process

Bottom-up:
command-line simulator

Calling point Function call

Generated Boilerplate written by user

Figure 5. Examples of call graphs.

ESI

layer This;
layer Other;
interface <This , Other > {

=> { i32 x;
i32 y; },

<= { i32 z;
i32 w; }

};

ESM

v = ThisTalkOther(x, y);

Transformed Direct Call

Other(x, y, &v.z, &v.w);

Transformed Continuation

*_ThisToOther_x = x;
*_ThisToOther_y = y;
_continuation_pos = <N>;
return;
_continuation_ <N>:
v.z = _OtherToThis_z;
v.w = _OtherToThis_w;

Figure 6. Transforming a talk into a function call or a
continuation. <N> is a placeholder for a newly allocated con-
tinuation index.

The Clang AST is further lowered to LLVM IR [74], and
thence transformed to Verilog. LLVM IR uses static single-
assignment (SSA) form, which maps well to combinatorial
logic in Verilog. Each function (layer) becomes a Verilog mod-
ule. Basic blocks are converted to states. IR instructions are
translated into blocking assignments in Verilog to preserve
data dependencies between instructions. They will be ana-
lyzed by the electronic design automation (EDA) tool used
to implement the circuit to extract parallelism. Arithmetic
instructions are translated to the corresponding ones in Ver-
ilog. Branch instructions (conditional, unconditional, switch,
the 𝜙 node [74]) become state transfers. Instructions that
involve pointers (such as stack allocation, load and store)
are converted to operations on registers. As ESM disallows
pointers and global variables, all pointers appearing in IR
can be located with static analysis. The detailed translation
rules can be found in a separate report [45].

talk and read require special handling, since they in-
volve communications with other layers and require more
than one cycle. Efeu uses ready/valid handshaking, a flexible

and lightweight design widely adopted in designs like the
AMBA AXI4 protocol [5]. On a unidirectional channel, the
sender outputs data signals and a valid signal. The receiver
outputs ready when it can accept more data.
A talk results in the following four states (read results

in states 2 to 4), encoded as additional basic blocks.

1. Output data. Assert valid. Wait until peer asserts ready.
2. De-assert valid. Assert ready. Wait until peer asserts

valid.
3. Save data from peer. Assert ready.
4. De-assert ready.

3.5 Generating hybrid hardware/software drivers
Efeu can also generate hybrid drivers, with multiple hard-
ware/software layer boundaries defined at compile time. The
hardware/software interface is based on AXI Lite [5]: be-
tween layers that straddle the boundary, data fields and
valid and ready signals from the handshaking protocol are
memory-mapped at different offsets. Figure 7 shows the case
with EepDriver in hardware and Transaction in software,
corresponding to the ESI interface in Figure 4.

The hardware handshaking protocol assumes sender and
receiver being in the same clock domain [5]: after a cycle
where both valid and ready are raised, the sender needs to
lower the valid signal immediately on the next clock cycle
if there is no more data to send. Otherwise, the receiver
treats data on the bus as the next valid packet. Similarly,
the receiver needs to lower the ready signal unless it can
immediately accept more data on the next cycle.
This is not the case when one side is in software. If the

valid port uses a simple register, the software side might
not be able to reset it in time, resulting in the same data
being transmitted multiple times. Similarly, if the software
does not reset its ready port in time, the hardware may send
multiple packets that overwrite one another, causing data
loss.

We solve this by performing automatic resets on the hard-
ware side in the AXI Lite driver. Software writing a non-zero
value to its output valid port means the data in the data reg-
isters is valid once. If the data is consumed, the valid signal is
lowered in the hardware on the next cycle. Similarly, writing
non-zero to the output ready port means the software side
is ready to accept one packet. Once a packet is in place, the
ready signal is lowered by the hardware on the next cycle.
On the software side, as with any device, waiting for the

valid signal can be done by either polling or using interrupts.
We implement both: as we show later in section 5, they have
different impacts on performance and CPU usage.

The software and hardware stub code are generated based
on a minimal OS-specific library, currently implemented for
Linux and seL4 [37] in less than 100 lines of code each. For
the Linux implementation, a small kernel module (less than



Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

0x00

...

Console

CEepDriver

CTransaction

CByte CSymbol I2C
bus

Program 1

Software

status & reset
CEepDriver to
CTransaction

CTransaction

to CEepDriver

action
addr

valid
ready

MMIO
offset 0x04

0x28

0x08
0x0C
0x20

0x04

0x24

IP 1 IP 2Hardware

Program 2

Figure 7.Multiple hardware/software boundaries. MMIO-
AXI Lite interface between CEepDriver and CTransaction
(corresponding to the ESI definition in Figure 4).

150 lines of code including blank lines and comments) cre-
ates userspace I/O (UIO) [40] device files for Efeu hardware
based on device tree entries. The generated drivers then run
in userspace. The library only mmaps the device file and pro-
vides functions for directing reads and writes to the virtual
base address obtained from mmap, plus a function to wait for
an interrupt which uses a blocking read to the UIO device
file. On seL4 we rely on the Microkit SDK [27] to map the
device registers into the virtual address space of the driver’s
protection domain. The read and write functions are then
implemented the same as in Linux. Waiting for an interrupt
is implemented using the blocking seL4_Recv syscall.

Efeu can generate drivers with more than one hardware/-
software boundary, as in Figure 7. These configurations are
not optimal for performance, but can be useful for debugging
(e.g. temporarily replacing a hardware layer with software).

3.6 Promela backend
The Promela backend transforms the AST into input for the
SPIN model checker, preserving syntactic information like
variable names and control flow from the AST and allowing
the developer to make easy correspondence between the
ESM code and the generated Promela. Most ESM constructs
have straightforward analogs in Promela, including variable
declarations, operators, and control flows. The notable trans-
lation rules are listed as follows.

• bit and byte are not built-in types in C. Stub code gen-
erated by ESMC typedefs them as unsigned char to
make the ESM code syntactically correct but they are
translated to exactly bit and byte in Promela.

• Enumerations translate to mtype [23].
• ESM channels translate to rendezvous (synchronous)
channels in Promela [23].

• Layer functions translate to Promela processes [23]
with channels passed as parameters, allowing users to
write parameterized verifiers (section 4.4).

Electrical

Byte
specification

Symbol
specification

Interchangeable

Controller
Byte

Controller
Symbol

Responder
Byte

Responder
Symbol

Glue

Input space definitions Generated

Written

Figure 8. Architecture of the Byte verifier.

• In Promela, if statement encodes non-deterministic
choices [23]. If no option is executable, the expression
is blocking. However, in ESM when the condition does
not hold, the if block is skipped. We encode such be-
havior by generating an else -> skip block if there
is no else branch in ESM.

The generated Promela models the system, but must be
combined with verifier code for input to the model checker.
Note that Efeu does not provide full formally-verified end-
to-end properties: we trust ESMC to generate correct code
(with extensive tests) and the downstream toolchains to cor-
rectly compile them. Removing this gap in the proof could be
attempted using a range of techniques for compilers [43, 64]
and EDA tools [41, 44, 47] but is beyond the scope of this
paper.

4 Verification
In the following, we describe how Efeu is used to verify a
generated I2C stack following the approach from our previ-
ous work [30], starting with the simplest case of one con-
troller and one responder. We then discuss how we extend
the technique to support multiple devices using parameter-
ized verifiers in section 4.4. We also explain how to model
non-standard devices and quirks in section 4.5.

4.1 Approach
For each layer except Electrical, we verify that the stack
conforms to the behavior specification and there is no live-
or deadlock in the system. Functional correctness is checked
by assertions and the absence of live- and deadlocks is veri-
fied automatically by the model checker, both regarding the
specified behavior. Figure 8 shows the architecture of the
Byte verifier as an example. The unit-under-test is the Byte
layer, which is connected to the layer below. An input space
specification defines the valid input to the system. Inputs are
fed to both the stack and the behavior specification and the
outputs are compared.
The state search space of the whole stack is non-trivial.

To mitigate the state explosion issue, we apply the technique
we proposed previously [30], which substitutes lower layers



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

with the corresponding behavior specification. This signifi-
cantly reduces the model checking runtime (see section 4.3)
and consequently allows larger input spaces and/or larger
systems (section 4.4). Each different class of layer has a dif-
ferent type of behavior specification, as follows:

The Symbol behavior specification specifies how symbols
are combined on the bus. For example, a START symbol and
an IDLE symbol (passively listening) are combined into a
START operation received by both devices. BIT0 plus BIT1
results in BIT0 due to the pull-down characteristic of the I2C
bus. The corresponding input space specification specifies
valid control sequences from the Byte layers above.

The Byte behavior specification specifies how the con-
troller and the responder should interact at the byte level.
For example, when the controller writes a byte, the respon-
der should be listening and the byte should be seen by both
devices ultimately.
The Transaction behavior specification raises the ab-

straction level further up. The controller issues read and/or
write transactions and the responder observes them. The
input space specifies valid control sequences from above as a
mixture of read transactions, write transactions, and/or stop
operations. It is at this level that model checking scalability
becomes an issue. Exploring the whole search space, includ-
ing the variable payload length and content is infeasible. We
therefore currently limit the input space specification for the
Transaction verifier to a variable payload length of up to 4
bytes and a fixed payload content.

The example EepDriver behavior specification raises the
abstraction level to EEPROM read and write operations. As
with the Transaction verifier we limit the input space spec-
ification to a fixed EEPROM offset for reads and writes and
a payload of between 1 to 4 bytes of fixed content.

In our previous work, we chose SPIN as the model checker
for its ease of use and maturity. We also used it for this
work to reuse the behavior specifications. The verification
scalability experiment in section 4.4 shows some limitations
of the tool: increasing the number of devices and/or the
payload length leads to state space explosion. We expect
that more recent model checkers, especially symbolic SAT-
based ones [76] would be able to explore the search space
more efficiently. Exploring this and alternative verification
strategies, like pairwise verification of devices, are however
beyond the scope of this paper.

4.2 Verification code size
While Efeu generates the complete stack in Promela from
ESI/ESM, the other components of the verifiers (input space
definitions, behavior specifications, and glue) require manual
effort. The cost of verification will thus vary from platform
to platform. As an indication, we report here the code size
of both the generated and the handwritten files.

The ESM and C code is formatted with ClangFormat [72]
and counted with cloc [17]. For Promela code, to our best

knowledge, there is no canonical Promela formatter. There-
fore, we build an in-house formatter and consistently apply
it on both generated and handwritten Promela code. Com-
ments and empty lines are excluded in all code.
Table 1 shows the results; those for generated code are

underlined. At the Symbol and Byte levels, the controller
and responder share most of the ESM code using preproces-
sor macros to include the same files, so we report combined
lines. Shared generated Promela code defines common data
structures and channels, which cannot be attributed to spe-
cific layers. Shared glue code is written once and included
in all verifiers.

We see that the generated Promela has roughly the same
size as the ESM specification, which is expected due to the
close semantics of the languages. The ratio of additional
handwritten Promela code to generated code is between 0.96
and 1.49 (excluding shared code). These numbers are only a
rough approximation of the cost of verification, but do show
how Efeu reduces the verification cost and avoids human
errors by automating the translation from the specification
to Promela.

4.3 Verification runtime
To demonstrate the practicality of verification and effective-
ness of abstraction levels (section 4.1), we measure the run-
time of SPIN executing these verifiers on an AMD Ryzen 9
7950X 16-Core machine with 64GB RAM and 128GB swap
memory. The SPIN version is 6.5.2. Each verifier is executed
5 times. SPIN can check for either deadlocks or assertion fail-
ures (invalid end states) or livelocks (non-progress cycles) in
one execution, but not both. Therefore, each verifier is com-
piled and executed in each configuration, and the runtime is
summed up.
Table 2 show average runtime, and also the effect of ab-

stracting lower layers with the corresponding behavior spec-
ifications. All verifiers pass. We observe no significant devia-
tion across runs. The maximum coefficient of variation of all
measurements is under 2.7%, and so we omit it for brevity.

Verifying Symbol is fast. Moving up the stack, the runtime
increases dramatically, but limiting the input space allows
the I2C stacks to be verified in reasonable time.

4.4 Scalability
So far we have shown verification for a single controller
and responder. We now show the scalability of our approach
modeling and verifying parameterized systems with multiple
EEPROMs. The verifier uses channel arrays in Promela [23].
Multiple responders are instantiated and connected to an
Electrical layer.
We vary the number of EEPROMs and the maximum

length of the reads and writes. The EEPROM offset and pay-
load content are fixed. We also show a “variable payload”
with one EEPROM where the first payload byte is chosen
from two options non-deterministically. As in section 4.3, we



Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 1. Source code lines of layers

Layer ESM Promela C Verilog

Controller Responder Generated
controller

Generated
responder

Behavior
specification

Input space
and glue

Generated
controller

Generated
controller

Symbol 139 96 95 65 119 159 613
Byte 114 143 143 85 203 174 465

Transaction 106 177 126 116 114 184 125 571
EepDriver 62 85 81 119 55 243 62 374
Shared 111 121

Table 2. Average verification runtime (s)

Layer Abstraction level
None Symbol Byte Transaction

Symbol 0.24
Byte 11.33 4.01

Transaction 104.53 34.79 6.11
EepDriver 584.78 196.31 38.92 9.15

1 2 3 4 5 6 7 8
Maximum read/write length (bytes)

0

500

1000

1500

2000

A
ve

ra
ge

ve
ri

fic
at

io
n

ru
nt

im
e

(s
)

1 EEPROM
1 EEPROM (variable payload)

2 EEPROMs
3 EEPROMs

Figure 9. Verification runtime of multiple EEPROMs with
different maximum payload lengths.

replace lower levels with behavior specifications to reduce
the verification runtime, which is shown in Figure 9. Again,
we omit the insignificant standard deviations.

This shows that systems with multiple responders can be
verified in reasonable time. However, the state space still
explodes as the input space is enlarged or the number of
responders increases.We discussed some strategies to further
scale the verification at the end of section 4.1.

4.5 Non-standard devices
We now show how to model devices that violate the I2C
standard, taking as examples the KS0127 video decoder and
the I2C controller on the Raspberry Pi.

The KS0127 video decoder (unlike the successor KS0127B
[61]) has a quirk [20, 60]: in an I2C read transaction, it at-
tempts to sample a stop condition at the place where the ac-
knowledgment bit should be. Otherwise, the stop condition is

not recognized. Linux introduced a flag (I2C_M_NO_RD_ACK)
to handle this behavior solely for this device [20].
In Efeu, we model this quirk by changing only the Byte

layer for the KS0127 responder to skip reading the acknowl-
edgment bit in a read transaction. This involves 13 lines
of additional ESM code. We also modify the maximum read
length in the input space specification to 1 as both the KS0127
datasheet [60] and the Linux driver code [20] only specify
reading one byte.
When we combine the modified KS0127 Byte and the

standard controller Byte, SPIN reports the system can enter
an invalid end state, showing that the standard controller is
not interoperable with the KS0127 responder.

Next, we modify the controller Byte layer to make it com-
patible with KS0127, involving 10 lines of additional code.
With this modified controller, the verifier passes. Note that
above these modified Byte layers, the Transaction layer
can be used unmodified, and the stack fully verified, show-
ing that quirks can be handled within in a single layer.
Similarly, using Efeu, we can efficiently model the hard-

ware I2C controller on the Raspberry Pi that does not han-
dle clock stretching [49], by removing the clock stretching
handling code from the controller Symbol layer in our spec-
ification, requiring 3 additional lines of code (essentially a
preprocessor macro). The standard Symbol verifier detects
problems in the modified stack. If we also remove clock
stretching from the input space, essentially modeling a re-
sponder that never stretches the clock, the verifier passes.

5 Evaluation on real hardware
We evaluate the hybrid hardware/software I2C controllers
generated by Efeu on real hardware, varying the split be-
tween hardware and software. In this section, we report the
results and show that it is feasible to efficiently explore the
trade-offs between achievable bus speed, CPU usage, and
FPGA resource utilization.We compare the generated drivers
with two baselines: the Linux “bit-banging” kernel driver
and the Xilinx I2C IP [3].
The generated drivers run on a Zynq UltraScale+ MP-

SoC [79]. The MPSoC features a quad-core ARM Cortex-A53
and a Xilinx 16nm FPGA. A modified OpenBMC [22] distri-
bution (kernel version 5.15) runs on the ARM cores. Efeu-
generated C code is cross-compiled using GCC 13.2.0 with



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

-O3 optimization. Generated hardware parts are placed in an
FPGA design, implemented using Xilinx Vivado 2022.1 with
the default settings, and loaded on the FPGA. All components
in the FPGA design are driven by the 100 MHz clock. Two
GPIO pins serve as SCL and SDA, routed to an IO connector
and connected to an I2C bus.
For I2C responders, we model Microchip 24AA512 EEP-

ROMs [51] which support I2C Fast Mode (400 kbit/s). How-
ever, to demonstrate that the generated drivers work in prac-
tice, we use a real 24AA512 EEPROM as the responder, con-
nected to the I2C bus. EEPROMs are slow for write opera-
tions: on the 24AA512, page writes can take up to 5ms [51].
During busy periods, the device stops responding to subse-
quent I2C requests. We focus on the I2C performance of the
generated drivers rather than that of the EEPROM and so
only report read operation performance.

A Keysight InfiniiVision MSO-X 3024T oscilloscope [34] is
used to inspect signals on the I2C bus. The SCL and SDA lines
are captured as analog signals. The oscilloscope is capable
of finding rising/falling edges and decoding I2C packets.
To get the best performance from the baseline Linux I2C

“bit-banging” driver, the GPIO delay [18] is set to 1 (0 results
in a longer default delay). Internally, the driver polls the
GPIO pins using a spinlock to wait between operations [19].
The Xilinx I2C baseline consists of two parts: hardware

IP in the FPGA design with the target frequency set to 400
kHz, and the Linux driver from Xilinx supporting interrupts.
The IP offers a similar abstraction level as our Transaction,
while offering additional functionality like FIFO queues.

We denote software/hardware splits by the topmost hard-
ware layer. For example, configuration Byte has Byte and
below in hardware and the rest in software.

5.1 Source code size
To show how effective Efeu is in reducing the effort of writing
I2C stack implementations, we measure the generated source
code size. C code is formatted with ClangFormat [72] while
Verilog code generated by Efeu is already formatted. Code
size is measured using cloc [17].
For layer implementations, sizes of the generated C and

Verilog code are in Table 1. The generated C code has roughly
the same size as the corresponding ESM specification. The
generated Verilog files are a few times larger than the ESM
files. Table 3 shows the result for the MMIO-AXI Lite inter-
face across the software/hardware boundary. Vivado uses
VHDL for AXI Lite interfaces, so does Efeu. Mixing VHDL
and Verilog is not a problem as Vivado (and many other
EDA tools) trivially supports it. The interface specification
(ESI) is highly compact, while the generated code contains
significantly more lines of code.

By specifying the stack in ESI/ESM once, developers save
the effort of implementing the same thing in C and Verilog.
While the generated code is expected to be less compact than

Table 3. Source code lines for MMIO-AXI Lite interfaces

Interface ESI Generated
C VHDL

Electrical-Symbol 10 71 308
Symbol-Byte 16 67 295

Byte-Transaction 28 71 308
Transaction-EepDriver 24 82 391

EepDriver-World 23 80 401

code written by human experts, we conclude that Efeu helps
reduce the effort required to materialize the verified stack.

5.2 Achievable bus speeds
The EEPROM supports the I2C Fast Mode (400 kHz SCL) [53].
However, not all controllers can drive the bus at this speed.
We measure the achievable bus speeds of both the baselines
and the generated drivers to show how the software/hard-
ware split point and the type of interface (polling versus
interrupt-driven) affect the I2C driver performance.
We measure the bus speed achievable by each controller

by issuing 3 EEPROM reads of 14 bytes and inspecting the
waveforms captured by the oscilloscope. The oscilloscope is
triggered by the first falling edge of SDA, signaling the start
condition of an I2C transaction. It records long enough to
cover the whole operation.We use its built-in search function
to find all rising edges of SCL. Experiments consistently
show 164 rising edges for each EEPROM read operation. We
calculate the effective SCL frequency as the inverse of the
time between two consecutive rising edges. We show the
average frequency and the standard deviation.

In the top half of Figure 10, the average frequencies across
the whole operation and the 3 repetitions are shown. The
error bars show the standard deviations. The Xilinx I2C IP
reaches bus speeds close to the target frequency with little
variation. The achievable bus speed is 386.57 kHz and the
standard deviation is 23.75 kHz. The Linux bit-banging driver
achieves an average frequency of 162.81 kHz, less than half
of the target frequency. The standard deviation is 12.85 kHz.
The polling-based Electrical driver achieves a slightly

lower frequency of 154.44 kHz with a standard deviation of
12.97 kHz. The interrupt-driven Electrical driver does not
function correctly due to excessive interrupts being issued.
By moving the Symbol layer into hardware, the polling-

based Symbol driver achieves a higher bus frequency of
263.32 kHz with a standard deviation of 12.77 kHz. Due to the
reduced traffic across the software/hardware boundary, in-
terrupts work for the Symbol driver. However, the interrupts
yet introduce non-negligible overhead—the interrupt-driven
Symbol driver only achieves 108.76 kHz.
By moving the next layer Byte into the hardware, the

polling-based Byte driver achieves an average frequency
closer to the target of 359.98 kHz. However, the standard
deviation becomes more significant, reaching 89.82 kHz. The



Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

0

100

200

300

400

500

Tr
an

sm
is

si
on

sp
ee

d
(k

H
z)

Xilinx I2C Bit-banging Electrical Symbol Byte Transaction EepDriver
0

25

50

75

100

125

C
PU

us
ag

e
(%

)

Baseline Generated

Interrupt-driven Polling

Figure 10. Achievable bandwidth (top) and CPU usage (be-
low). 100% CPU means one core (out of four) is fully utilized.
The shaded area are the baselines and the Efeu configurations
are labeled with the highest layer implemented in hardware.

interrupt-driven Byte driver has less overhead. It shows an
average frequency of 342.9 kHz, close to the polling-based dri-
ver, and similarly a higher standard deviation of 123.58 kHz.

The Transaction drivers move one more layer into the
hardware. At this point, the generated drivers have a similar
abstraction level as the Xilinx I2C IP. The achievable fre-
quencies of both the polling-based and the interrupt-driven
drivers are close to the target frequency, averaging 392.48
and 392.24 kHz respectively. The standard deviations also
drop to 33.25 and 36.36 respectively. Compared with the Xil-
inx IP, Transaction drivers have slightly higher bus speeds
and standard deviations.
When all layers are in hardware, the EepDriver drivers

achieve 396.02 kHz (polling) and 396.01 kHz (interrupt-driven).
The standard deviations further drop to 10.37 kHz (polling)
and 10.34 kHz (interrupt-driven).

To assist interpretation of the differences in achievable bus
speeds, Figure 11 shows several waveforms of SCL. When
the driver has a large portion in software, such as the Linux
bit-banging driver or the Electrical driver, SCL is driven
slowly and with unstable frequency. The software part takes
longer time to process and to communicate data across the
software-hardware boundary. In contrast, when most of the
stack is in hardware, like the Xilinx I2C IP and the EepDriver
driver, SCL is driven towards the target frequency stably.

The experiment demonstrates how the splits between soft-
ware and hardware affect the driver performance. Higher and
more stable performance can be achieved by moving layers

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (us)

EepDriver
(interrupt)

Electrical
(polling)

Bit-banging

Xilinx I2C

Figure 11. Waveforms of the first few SCL cycles, captured
by the oscilloscope.

into hardware. This reduces traffic across the software/hard-
ware boundary, where MMIO operations take time. In ad-
dition, when implemented in hardware, layer FSMs transit
their states deterministically adhering to the hardware clock.
When the whole stack is implemented in software, the

Efeu-generated Electrical driver achieves a performance
close to the Linux bit-banging driver. However, neither of
them reaches the target frequency of 400 kHz. If the plat-
form allows, by implementing parts of the stack in hardware,
Efeu-generated drivers can achieve the target frequency,
comparable with the Xilinx I2C IP, an optimized hardware
implementation.

5.3 CPU usage
The splits of software and hardware affect not only the
achievable bus speed but also the CPU usage. If the plat-
form on which the drivers run has limited computing power,
understanding the latter correlation helps decide the optimal
implementation. In this experiment, we measure the CPU
usage of the Efeu-generated drivers and the baselines.

Similar to the experiment discussed in section 5.2, drivers
issue EEPROM operations of reading 14 bytes. However, in
this experiment, those operations are issued consecutively
and indefinitely until manual termination. In this way, we
can read out the CPU usage in a stable running state. No other
process consumes significant computing power. Behavioral
correctness is asserted by placing software assertions and
inspecting I2C transactions decoded by the oscilloscope.
The result is shown in the lower half of Figure 10. As

expected, all polling-based drivers fully utilize one core. In
contrast, using interrupts at the software/hardware bound-
ary reduces the CPU usage. The polling-based Electrical
driver does not work as explained in section 5.2. The Xilinx
I2C IP consumes 12%. The Symbol driver consumes 64%. The
Byte driver consumes 36%. Moving the split point further up-
wards, the CPU usage drops significantly. The Transaction
and EepDriver drivers takes 8% and 4% respectively.

The experiment demonstrates how the software-hardware
split point affects CPU usage of the driver. Naturally, by mov-
ing parts of the stack into hardware, the CPU usage decreases



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

Xilinx I2C Electrical Symbol Byte Transaction EepDriver

Software-hardware split point

0

200

400

600

800

1000

1200

L
U

T
s

391

48
141

249

807

997

3612 86
40 15

65

120
4717

65

112

490

124
16

65

111

450

203

152
16

Xilinx I2C
Symbol

Byte

Transaction

EepDriver

AXI Lite driver
Others

Figure 12. LUT utilization.

Xilinx I2C Electrical Symbol Byte Transaction EepDriver

Software-hardware split point

0

200

400

600

800

1000

1200

1400

1600

FF
s

374

41
159

252

790

1377

2615 107
37 15

92
98

4715

92
93

382

208
15

92
93

365

595

217
15

Xilinx I2C
Symbol

Byte

Transaction

EepDriver

AXI Lite driver
Others

Figure 13. FF utilization.

for the interrupt-driven drivers but not the polling-based
drivers. The interrupt-driven Transaction and EepDriver
drivers generated by Efeu have the lowest CPU usage, lower
than the Xilinx IP.

5.4 FPGA resource utilizations
In this subsection, we report the FPGA resource utilizations
of the hybrid hardware/software drivers. We focus on two
main resources on FPGA, Look-Up Tables (LUTs) and Flip-
Flops (FFs). The usage data is extracted from the resource
utilization report generated by Xilinx Vivado. Since layers
are implemented as Verilog modules, Vivado also reports the
resource usage of each layer.
LUT and FF utilizations are shown in Figure 12 and Fig-

ure 13 respectively. "Others" is calculated as the total LUTs
or FFs minus the sum of all other parts, attributed to the
bus adaptor and possibly the glue. As the split point moves
up along the stack, we see the resource usage of low lay-
ers decreases. We believe it is due to Vivado performing
cross-boundary optimization among modules.

Electrical, Symbol and Byte use fewer LUTs and FFs
than the Xilinx I2C IP. Transaction, which has a similar

abstraction level as the Xilinx IP, consumes 2.08× of LUTs
and 2.11× of FFs. We believe this is a reasonable overhead
when comparing a generated driver with an IP crafted by
human experts, especially when considering that the Efeu-
generated drivers possess the assurance gained from the
model checking. Furthermore, compared to the available
resources on commercial FPGAs, these utilizations are very
small. The FPGA on the MPSoC has 117120 LUTs and 234240
FFs [4]. In terms of the total available resources, the Xilinx IP
consumes 0.33% of LUTs and 0.16% of FFs. The Transaction
driver consumes 0.70% of LUTs and 0.34% of FFs. Even the
entire stack on the FPGA (EepDriver) requires only 0.85%
of LUTs and 0.59% of FFs.

This experiment demonstrates the Efeu-generated drivers
consume minimal FPGA resource in terms of the total avail-
able resources comparable to IP crafted by human experts.

5.5 Discussion
Combining these evaluations, we demonstrate that Efeu
helps find the optimal implementations depending on differ-
ent criteria: performance, CPU usage, and FPGA utilization.
On our evaluation platform, by implementing Byte and

lower layers in hardware and using the interrupt-driven
interface, the driver can achieve about 350 kHz bus speed,
consume less than 40% CPU, and use less FPGA resources in
both LUTs and FFs compared with the Xilinx IP.
If a bus speed higher than 390 kHz is required, at least

Transaction and all layers below need to be implemented
in hardware. Based on that, implementing the EepDriver
layer in hardware only provides marginal benefits in the bus
speed and the CPU usage. However, if extremely stable bus
speed is desirable, EepDriver is a good option.

If there is no programmable logic available on the platform,
Electrical is the only option. In this case, the driver cannot
achieve the full bus speed (so does the Linux bit-banging
driver). However, the Efeu-generated ones still possess the
assurance provided by the model checking.

6 Related work
Driver reliability has been a long-standing issue. There is
therefore a large body of work to improve driver quality.
There are three main categories of approaches to produce
better drivers, and we survey them in turn: hardware/soft-
ware co-design, synthesis of drivers from specifications, and
post-hoc verification of manually written drivers.

6.1 Hardware/software co-design
Early approaches like Chinook [12–14] focused on I/O port
allocation, synthesis of multiplexers, arbiters and driver code
to share processor interfaces among devices. Chinook also
synthesizes low-level hardware interfaces from timing dia-
grams. The adapter that Efeu uses to ensure the timing on the
bus is currently hand-coded in 106 lines of VHDL but could



Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

be synthesized with such an approach. CoWare [75] can syn-
thesize more complex hardware to adapt device interfaces to
I/O interfaces available on a processor. It also generates code
to make these adaptions transparent and maintain the de-
vice interface to software. These early systems usually make
the assumption that the entire system is synthesized from
the specification, and they use ad-hoc protocols for device
interaction. In contrast, we demonstrate that we can ver-
ify a system built from off-the-shelf components connected
with a standard protocol. Ortega et al. [55] extend Chinook
to be able to instantiate standard bus protocols like I2C or
CAN and adapt device drivers to be able to use built-in bus
controllers. They consider global system analysis for fulfill-
ing real-time constraints but not for functional interference
between devices. They also assume a standard I2C imple-
mentation, which leaves the many quirks in I2C hardware
out of the picture. Correctness of the co-designed systems
is usually tested by full-system simulators that can also be
synthesized from the specifications. Efeu gives formal guar-
antees on the properties it verifies. Later approaches then
extend the power of the synthesis: O’Nils and Jantsch [54]
present a method to synthesize DMA controllers to proxy off-
the shelf devices to offload memory accesses from the CPU.
In HINGE [80] a higher level device API can be synthesized
and the correct usage of the API is checked at runtime and
with BCL [36] the partition between software and hardware
can be chosen independent of the specification and partial
implementations (only software, hardware or interface) are
possible. None of these approaches focus on interoperability
of off-the-shelf components like Efeu does.

6.2 Driver synthesis
Earlier work in driver synthesis was mostly concerned with
device register specification. Devil [50] and HAIL [66] syn-
thesize low-level register access code from specifications
describing the interface to hardware. In NDL [16], one can
additionally specify device state transitions and how they
relate to the register accesses. The NDL compiler then syn-
thesizes functions for querying and modifying the device
state. In Efeu the interfaces are specified with ESI, and we can
then not only generate the software to access the registers
but also the register interface itself.

While these systems free developers from writing tedious
bit manipulation code, this is only a part of modern drivers.
Later approaches aim to synthesize full drivers with inter-
face specifications to devices, operating systems and other
software. Notably, there is Termite [58, 59] and more recently
Ghost Writer [77]. Both systems are limited in the complex-
ity of the device that they can synthesize drivers for. This
complexity only gets worse when considering the interac-
tions between devices. With Efeu we therefore chose to go
with a verification approach instead. And we will review
some existing approaches next.

6.3 Driver verification
Verifying manually written drivers is pragmatic: the quality
of existing drivers can be improved without having to reim-
plement what is a significant part of the OS [11]. SLAM [6]
verifies the correct usage of OS APIs by drivers using model-
checking. SafeDrive [81] achieves a similar goal, but they
synthesize run time checks to catch driver errors and recover
from them. Bošnački et al. [7] use model-checking and static
analysis to verify the correct use of Linux APIs by an I2C
driver. The biggest difference to Efeu is that we focus on the
interaction between the driver and the devices and between
devices and not between the driver and the OS. In that sense
these approaches are complementary to ours.
An example of post-hoc verification that focuses on the

interaction with the device is Kim et al. [35] who verify a
flash driver using model checking. There are however limi-
tations to how thoroughly software can be verified if it was
not implemented with verification in mind [37]. Many ap-
proaches therefore implement the drivers in a highly stylized
way. Chen et al. [9] target drivers for interruptible kernels
that they verify in Coq. Klomp et al. [38] target an I2C driver.
Pohjola et al. propose Pancake [56], a DSL targeted at easily
writing verifiable device drivers and keeping the verification
cost low. All the above focus on verifying individual drivers
that handle a single device and therefore cannot address in-
teroperability issues that arise in shared bus settings such as
I2C.
We follow a similar approach with Efeu and specify our

drivers in a DSL designed for verifying the properties we are
interested in.

7 Conclusion
Amid all challenges of producing correct drivers, bus-based
protocols like I2C pose another: interoperability. We have
presented Efeu which allows specifying full I2C subsystems
in DSLs, model checking it, and generating hybrid hardware/-
software drivers. Efeu helps developers to explore trade-off
between throughput, CPU usage and FPGA utilization.

While so far we have only applied the Efeu methodology
to I2C, we believe that it could be extended to other bus-based
protocols like SPI or CAN. These protocols share key features
with I2C: multiple agents transmit data bymodulating shared
wires, and the protocols consist of multiple abstraction levels
with potential quirks. The electrical characteristics, like the
number of wires that are used, only appear on the lowest
layer of an Efeu specification. Furthermore, bus timing is
handled by the lowest-level hardware adapter, allowing Efeu
to deal only with discrete time steps. This adapter is currently
handwritten but could be synthesized using HW/SW co-
design techniques for our approach to scale better to other
protocols (see section 6.1).

Another item for future work is reducing the trusted com-
pute base (TCB). A large part of it is the Efeu compiler. We



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

outlined some approaches for removing it from the TCB at
the end of section 3.6.
I2C is used in critical systems like BMCs where interop-

erability issues can lead to catastrophic bugs and security
vulnerabilities. Indeed, we intend to use Efeu to generate
a trustworthy I2C driver stack for the BMC on the Enzian
research computer [15]. This will require scaling the verifi-
cation to 10–20 devices on a bus. We outlined some potential
strategies to achieve this at the end of section 4.1.
Despite the remaining challenges, we believe that Efeu

is an important step towards verifying fundamental compo-
nents of critical infrastructure: By ruling out interoperability
issues, Efeu moves these systems closer to the trustworthi-
ness that they desperately need.

The Efeu compiler and all our I2C specifications are avail-
able as open source2.

Acknowledgments
We would like to thank our shepherd Yanyan Jiang and the
anonymous reviewers for their constructive feedback and
helpful comments. Special thanks go to Roman Meier for
testing the usage instructions for the artifact. We also thank
Google for their generous support of this research.

References
[1] Aldo Aguilar-Nadalini, Kuk H Chung, Cecilia Marsicovetere, Juan F

Medrano, Emilio Miranda, Víctor Ayerdi, and Luis Zea. 2023. Design
and On-Orbit Performance of the Electrical Power System for the
Quetzal-1 CubeSat. Journal of Small Satelites 12, 2 (May 2023), 1201–
1229.

[2] Amina Albalooshi, Abdul-Halim M. Jallad, and Prashanth R. Marpu.
2023. Fault Analysis and Mitigation Techniques of the I2C Bus for
Nanosatellite Missions. IEEE Access 11 (2023), 34709–34717. https:
//doi.org/10.1109/ACCESS.2023.3262410

[3] AMD 2012. LogiCORE IP AXI IIC bus interface data sheet. AMD.
[4] AMD 2022. Zynq UltraScale+ MPSoC Data Sheet: Overview

(DS891). AMD. https://www.amd.com/content/dam/xilinx/support/
documents/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf

[5] Arm 2022. Learn the architecture - An introduction to AMBA AXI. Arm.
[6] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. 2011. A Decade

of Software Model Checking with SLAM. Commun. ACM 54, 7 (July
2011), 68–76. https://doi.org/10.1145/1965724.1965743

[7] Dragan Bošnački, Aad Mathijssen, and Yaroslav S. Usenko. 2009.
Behavioural Analysis of an I2C Linux Driver. In Formal Methods
for Industrial Critical Systems, María Alpuente, Byron Cook, and
Christophe Joubert (Eds.). Springer, Berlin, Heidelberg, 205–206. https:
//doi.org/10.1007/978-3-642-04570-7_18

[8] Jasper Bouwmeester, Martin Langer, and Eberhard Gill. 2017. Sur-
vey on the Implementation and Reliability of CubeSat Electrical Bus
Interfaces. CEAS Space Journal 9, 2 (June 2017), 163–173. https:
//doi.org/10.1007/s12567-016-0138-0

[9] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman,
and Ronghui Gu. 2016. Toward Compositional Verification of Inter-
ruptible OS Kernels and Device Drivers. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’16). Association for Computing Machinery, New York,
NY, USA, 431–447. https://doi.org/10.1145/2908080.2908101

2https://gitlab.inf.ethz.ch/project-opensockeye/efeu

[10] Zitai Chen and David Oswald. 2023. PMFault: Faulting and Bricking
Server CPUs through Management Interfaces: Or: A Modern Example
of Halt and Catch Fire. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2023 (March 2023), 1–23. Issue 2. https://doi.
org/10.46586/tches.v2023.i2.1-23

[11] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. 2001. An Empirical Study of Operating Systems Errors. ACM
SIGOPS Operating Systems Review 35, 5 (Oct. 2001), 73–88. https:
//doi.org/10.1145/502059.502042

[12] Pai Chou, Ross Ortega, and Gaetano Borriello. 1992. Synthesis of the
Hardware/Software Interface in Microcontroller-Based Systems. In
1992 IEEE/ACM International Conference on Computer-Aided Design.
IEEE Computer Society, USA, 488–495. https://doi.org/10.1109/ICCAD.
1992.279322

[13] Pai Chou, Ross B. Ortega, and Gaetano Borriello. 1995. Interface Co-
Synthesis Techniques for Embedded Systems. In Proceedings of the
1995 IEEE/ACM International Conference on Computer-aided Design
(ICCAD ’95). IEEE Computer Society, USA, 280–287.

[14] Pai H. Chou, Ross B. Ortega, and Gaetano Borriello. 1995. The Chinook
Hardware/Software Co-Synthesis System. In Proceedings of the 8th
International Symposium on System Synthesis (ISSS ’95). Association
for Computing Machinery, New York, NY, USA, 22–27. https://doi.
org/10.1145/224486.224491

[15] David Cock, Abishek Ramdas, Daniel Schwyn,Michael Giardino, Adam
Turowski, Zhenhao He, Nora Hossle, Dario Korolija, Melissa Liccia-
rdello, Kristina Martsenko, Reto Achermann, Gustavo Alonso, and
Timothy Roscoe. 2022. Enzian: An Open, General, CPU/FPGA Plat-
form for Systems Software Research. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS 2022).
Association for Computing Machinery, New York, NY, USA, 434–451.
https://doi.org/10.1145/3503222.3507742

[16] Christopher L. Conway and Stephen A. Edwards. 2004. NDL: A
Domain-Specific Language for Device Drivers. ACM SIGPLAN Notices
39, 7 (June 2004), 30–36. https://doi.org/10.1145/998300.997169

[17] Albert Danial. 2024. cloc: v2.00. GitHub. https://github.com/AlDanial/
cloc

[18] The Linux development community. 2024. Device-Tree bindings
for I2C GPIO driver. https://www.kernel.org/doc/Documentation/
devicetree/bindings/i2c/i2c-gpio.txt Accessed on 2024-05-12.

[19] The Linux development community. 2024. linux/drivers/i2c/busses/i2c-
gpio.c at Linux v5.15. https://github.com/torvalds/linux/blob/v5.15/
drivers/i2c/busses/i2c-gpio.c Accessed on 2024-05-12.

[20] The Linux development community. 2024. linux/drivers/medi-
a/i2c/ks0127.c at Linux v5.15. https://github.com/torvalds/linux/
blob/v5.15/drivers/media/i2c/ks0127.c Accessed on 2024-05-08.

[21] The Linux development community. 2024. linux/drivers/pci/quirks.c
at Linux v6.9. https://github.com/torvalds/linux/blob/v6.9/drivers/
pci/quirks.c Accessed on 2024-05-17.

[22] The OpenBMC development community. 2024. OpenBMC. https:
//github.com/openbmc/openbmc Accessed: 2022-09-08.

[23] The SPIN development community. 2012. Promela Manual page. http:
//spinroot.com/spin/Man/promela.html Accessed: 2023-08-02.

[24] Shuying Fan and Supriya Velagapudi. 2023. Implementing Next-
Generation Data Center Platform Management Using Agilex 3 and Ag-
ilex 5 Devices. https://www.intel.com/content/www/us/en/content-
details/787067/implementing-next-generation-data-center-
platform-management-using-agilex-5-devices.html Accessed
on 2024-05-21.

[25] Ben Fiedler, Daniel Schwyn, Constantin Gierczak-Galle, David Cock,
and Timothy Roscoe. 2023. Putting out the Hardware Dumpster Fire.
In Proceedings of the 19th Workshop on Hot Topics in Operating Systems
(HOTOS ’23). Association for Computing Machinery, New York, NY,
USA, 46–52. https://doi.org/10.1145/3593856.3595903

https://doi.org/10.1109/ACCESS.2023.3262410
https://doi.org/10.1109/ACCESS.2023.3262410
https://www.amd.com/content/dam/xilinx/support/documents/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.amd.com/content/dam/xilinx/support/documents/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/978-3-642-04570-7_18
https://doi.org/10.1007/978-3-642-04570-7_18
https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1007/s12567-016-0138-0
https://doi.org/10.1145/2908080.2908101
https://gitlab.inf.ethz.ch/project-opensockeye/efeu
https://doi.org/10.46586/tches.v2023.i2.1-23
https://doi.org/10.46586/tches.v2023.i2.1-23
https://doi.org/10.1145/502059.502042
https://doi.org/10.1145/502059.502042
https://doi.org/10.1109/ICCAD.1992.279322
https://doi.org/10.1109/ICCAD.1992.279322
https://doi.org/10.1145/224486.224491
https://doi.org/10.1145/224486.224491
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/998300.997169
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/i2c-gpio.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/i2c-gpio.txt
https://github.com/torvalds/linux/blob/v5.15/drivers/i2c/busses/i2c-gpio.c
https://github.com/torvalds/linux/blob/v5.15/drivers/i2c/busses/i2c-gpio.c
https://github.com/torvalds/linux/blob/v5.15/drivers/media/i2c/ks0127.c
https://github.com/torvalds/linux/blob/v5.15/drivers/media/i2c/ks0127.c
https://github.com/torvalds/linux/blob/v6.9/drivers/pci/quirks.c
https://github.com/torvalds/linux/blob/v6.9/drivers/pci/quirks.c
https://github.com/openbmc/openbmc
https://github.com/openbmc/openbmc
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html
https://www.intel.com/content/www/us/en/content-details/787067/implementing-next-generation-data-center-platform-management-using-agilex-5-devices.html
https://www.intel.com/content/www/us/en/content-details/787067/implementing-next-generation-data-center-platform-management-using-agilex-5-devices.html
https://www.intel.com/content/www/us/en/content-details/787067/implementing-next-generation-data-center-platform-management-using-agilex-5-devices.html
https://doi.org/10.1145/3593856.3595903


Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[26] A. Ganapathi, Viji Ganapathi, and D. Patterson. 2006. Windows XP
Kernel Crash Analysis. In LiSA. USENIX Association, Berkeley, CA,
USA, 149–159. https://www.usenix.org/legacy/events/lisa06/tech/
ganapathi.html

[27] Gernot Heiser, Lucy Parker, Peter Chubb, Ivan Velickovic, and Ben
Leslie. 2022. Can We Put the “S” Into IoT?. In 2022 IEEE 8th World
Forum on Internet of Things (WF-IoT). IEEE, New York, NY, USA, 1–6.
https://doi.org/10.1109/WF-IoT54382.2022.10152198

[28] G.J. Holzmann. 1997. The Model Checker SPIN. IEEE Transactions on
Software Engineering 23, 5 (May 1997), 279–295. https://doi.org/10.
1109/32.588521

[29] Gerard J. Holzmann. 2000. Logic Verification of ANSI-C Code
with SPIN. In SPIN Model Checking and Software Verification, Klaus
Havelund, John Penix, and Willem Visser (Eds.). Springer, Berlin, Hei-
delberg, 131–147. https://doi.org/10.1007/10722468_8

[30] Lukas Humbel, Daniel Schwyn, Nora Hossle, Roni Haecki, Melissa
Licciardello, Jan Schaer, David Cock, Michael Giardino, and Timothy
Roscoe. 2021. A Model-Checked I2C Specification. In Model Checking
Software (Lecture Notes in Computer Science), Alfons Laarman and Ana
Sokolova (Eds.). Springer International Publishing, Cham, 177–193.
https://doi.org/10.1007/978-3-030-84629-9_10

[31] Giang Nguyen Thi Huong. 2011. GCC2Verilog Compiler Toolset for
Complete Translation of C Programming Language into Verilog HDL.
ETRI Journal 33, 5 (Oct. 2011), 731–740. https://doi.org/10.4218/etrij.
11.0110.0654

[32] Ke Jiang. 2009. Model Checking C Programs by Translating C to Promela.
Master’s thesis. Uppsala Universitet, Uppsala, Sweden. http://www.
diva-portal.org/smash/get/diva2:235718/FULLTEXT01.pdf

[33] kaedros. 2022. Raspberry Pi I2C clock-stretching bug GitHub Issue.
https://github.com/raspberrypi/linux/issues/4884 Accessed on 2024-
09-05.

[34] Keysight Technologies, Inc. 2020. Keysight InfiniiVision 3000T X-
Series Oscilloscopes User’s Guide. Accessed on 2023-08-08.

[35] Moonzoo Kim, Yunja Choi, Yunho Kim, and Hotae Kim. 2008. Formal
Verification of a Flash Memory Device Driver – An Experience Report.
In Model Checking Software, Klaus Havelund, Rupak Majumdar, and
Jens Palsberg (Eds.). Springer, Berlin, Heidelberg, 144–159. https:
//doi.org/10.1007/978-3-540-85114-1_12

[36] Myron King, Nirav Dave, and Arvind. 2012. Automatic Generation of
Hardware/Software Interfaces. ACM SIGARCH Computer Architecture
News 40, 1 (March 2012), 325–336. https://doi.org/10.1145/2189750.
2151011

[37] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (SOSP ’09). ACM, New York, NY, USA, 207–220.
https://doi.org/10.1145/1629575.1629596

[38] Arjen Klomp, Herman Roebbers, RuudDerwig, and Leon Bouwmeester.
2009. Designing a Mathematically Verified I2C Device Driver Using
ASD. InCommunicating Process Architectures 2009. Concurrent Systems
Engineering Series, Vol. 67. IOS Press, Amsterdam, Netherlands, 105–
116. https://doi.org/10.3233/978-1-60750-065-0-105

[39] Donald E. Knuth. 1997. The art of computer programming, volume 1 (3rd
ed.): fundamental algorithms. Addison Wesley Longman Publishing
Co., Inc., USA.

[40] Hans-Jürgen Koch. 2006. https://www.kernel.org/doc/html/latest/
driver-api/uio-howto.html Accessed on 2024-05-21.

[41] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. 2008. Validating
High-Level Synthesis. In Computer Aided Verification, Aarti Gupta
and Sharad Malik (Eds.). Springer, Berlin, Heidelberg, 459–472. https:
//doi.org/10.1007/978-3-540-70545-1_44

[42] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization (CGO ’04). IEEE Com-
puter Society, USA, 75.

[43] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-
mun. ACM 52, 7 (July 2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[44] Alan Leung, Dimitar Bounov, and Sorin Lerner. 2015. C-to-Verilog
Translation Validation. In 2015 ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE). IEEE,
New York, NY, USA, 42–47. https://doi.org/10.1109/MEMCOD.2015.
7340466

[45] Zikai Liu. 2023. Generating Trustworthy I2C Stacks Across Software and
Hardware. Master’s thesis. ETH Zurich, Zurich, Switzerland. https:
//doi.org/10.3929/ethz-b-000632755

[46] Jiang Long and Robert Brayton. 2016. A Simple C to Verilog Compila-
tion Procedure for Hardware/Software Verification. In 24th Interna-
tional Workshop on Logic & Synthesis. IWLS, Mountain View, CA, USA,
99–106.

[47] Andreas Lööw. 2021. Lutsig: A Verified Verilog Compiler for Veri-
fied Circuit Development. In Proceedings of the 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP 2021).
Association for Computing Machinery, New York, NY, USA, 46–60.
https://doi.org/10.1145/3437992.3439916

[48] Christopher D. Marlin. 1980. Coroutines. Lecture Notes in Computer
Science, Vol. 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/
3-540-10256-6

[49] Advamation mechatronic. 2013. Raspberry Pi I2C clock-stretching
bug. http://www.advamation.com/knowhow/raspberrypi/rpi-i2c-
bug.html Accessed on 2023-11-30.

[50] Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Mar-
let, and Gilles Muller. 2000. Devil: An {IDL} for Hardware Pro-
gramming. In Fourth Symposium on Operating Systems Design and
Implementation (OSDI 2000). USENIX Association, San Diego, CA,
14 pages. https://www.usenix.org/conference/osdi-2000/devil-idl-
hardware-programming

[51] Microchip 2021. 24AA512/24LC512/24FC512 512K I2C Serial EEPROM.
Microchip.

[52] NIST. 2024. NVD - CVE-2024-26593. https://nvd.nist.gov/vuln/detail/
CVE-2024-26593 Accessed on 2024-05-05.

[53] NXP Semiconductors 2021. I2C-bus specification and user manual. NXP
Semiconductors.

[54] Mattias O’Nils and Axel Jantsch. 2001. Device Driver and DMA Con-
troller Synthesis from HW /SW Communication Protocol Specifica-
tions. Design Automation for Embedded Systems 6, 2 (April 2001),
177–205. https://doi.org/10.1023/A:1011246731756

[55] Ross B. Ortega and Gaetano Borriello. 1998. Communication Syn-
thesis for Distributed Embedded Systems. In Proceedings of the 1998
IEEE/ACM International Conference on Computer-aided Design (ICCAD
’98). Association for Computing Machinery, New York, NY, USA, 437–
444. https://doi.org/10.1145/288548.289067

[56] Johannes Åman Pohjola, Hira Taqdees Syeda, Miki Tanaka, Krish-
nan Winter, Tsun Wang Sau, Benjamin Nott, Tiana Tsang Ung, Craig
McLaughlin, Remy Seassau, Magnus O. Myreen, Michael Norrish, and
Gernot Heiser. 2023. Pancake: Verified Systems Programming Made
Sweeter. In Proceedings of the 12th Workshop on Programming Lan-
guages and Operating Systems (PLOS ’23). Association for Computing
Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/3623759.
3624544

[57] Nadav Rotem. 2010. C-to-Verilog.Com: High-Level Synthesis Using
LLVM.

[58] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot
Heiser. 2009. Automatic Device Driver Synthesis with Termite. In

https://www.usenix.org/legacy/events/lisa06/tech/ganapathi.html
https://www.usenix.org/legacy/events/lisa06/tech/ganapathi.html
https://doi.org/10.1109/WF-IoT54382.2022.10152198
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/10722468_8
https://doi.org/10.1007/978-3-030-84629-9_10
https://doi.org/10.4218/etrij.11.0110.0654
https://doi.org/10.4218/etrij.11.0110.0654
http://www.diva-portal.org/smash/get/diva2:235718/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:235718/FULLTEXT01.pdf
https://github.com/raspberrypi/linux/issues/4884
https://doi.org/10.1007/978-3-540-85114-1_12
https://doi.org/10.1007/978-3-540-85114-1_12
https://doi.org/10.1145/2189750.2151011
https://doi.org/10.1145/2189750.2151011
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.3233/978-1-60750-065-0-105
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://doi.org/10.1007/978-3-540-70545-1_44
https://doi.org/10.1007/978-3-540-70545-1_44
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/MEMCOD.2015.7340466
https://doi.org/10.1109/MEMCOD.2015.7340466
https://doi.org/10.3929/ethz-b-000632755
https://doi.org/10.3929/ethz-b-000632755
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1007/3-540-10256-6
https://doi.org/10.1007/3-540-10256-6
http://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
http://www.advamation.com/knowhow/raspberrypi/rpi-i2c-bug.html
https://www.usenix.org/conference/osdi-2000/devil-idl-hardware-programming
https://www.usenix.org/conference/osdi-2000/devil-idl-hardware-programming
https://nvd.nist.gov/vuln/detail/CVE-2024-26593
https://nvd.nist.gov/vuln/detail/CVE-2024-26593
https://doi.org/10.1023/A:1011246731756
https://doi.org/10.1145/288548.289067
https://doi.org/10.1145/3623759.3624544
https://doi.org/10.1145/3623759.3624544


EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles - SOSP ’09. ACM Press, Big Sky, Montana, USA, 73. https:
//doi.org/10.1145/1629575.1629583

[59] Leonid Ryzhyk, Adam Walker, John Keys, Alexander Legg, Arun
Raghunath, Michael Stumm, and Mona Vij. 2014. User-Guided De-
vice Driver Synthesis. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation (OSDI’14). USENIX
Association, Berkeley, CA, USA, 661–676. http://dl.acm.org/citation.
cfm?id=2685048.2685101

[60] Samsung Electronics 1998. KS0127 Data Sheet. Samsung Electronics.
https://alltransistors.com/superdatasheets/_pdf/09/ks0127.pdf

[61] Samsung Electronics 2000. KS0127B Data Sheet. Samsung Electronics.
https://alltransistors.com/superdatasheets/_pdf/09/ks0127b.pdf

[62] SBS Implementers Forum. 2000. System Management Bus (SMBus)
Specification. Technical Report. http://smbus.org/specs/index.html

[63] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe, and Simon
Peter. 2011. ADeclarative LanguageApproach to Device Configuration.
In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
XVI). Association for Computing Machinery, New York, NY, USA,
119–132. https://doi.org/10.1145/1950365.1950382

[64] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein.
2013. Translation Validation for a Verified OS Kernel. ACM SIGPLAN
Notices 48, 6 (June 2013), 471–482. https://doi.org/10.1145/2499370.
2462183

[65] Antmicro Open Source. 2020. ARTIX DC-SCM. https://opensource.
antmicro.com/projects/artix-dc-scm/ Accessed on 2024-05-16.

[66] Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam.
2005. HAIL: A Language for Easy and Correct Device Access. In
Proceedings of the 5th ACM International Conference on Embedded
Software (EMSOFT ’05). Association for Computing Machinery, New
York, NY, USA, 1–9. https://doi.org/10.1145/1086228.1086230

[67] System Management Interface Forum, Inc. 2015. PMBus Power
System Management Protocol Specification Part I – General Re-
quirements, Transport And Electrical Interface. Technical Re-
port. https://pmbusprod.wpenginepowered.com/wp-content/uploads/
2022/01/PMBus-Specification-Rev-1-3-1-Part-I-20150313.pdf

[68] System Management Interface Forum, Inc. 2015. PMBus Power System
Management Protocol Specification Part II – Command Language.
Technical Report. https://pmbusprod.wpenginepowered.com/wp-
content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-II-
20150313.pdf

[69] The Clang Team. 2024. Clang: C Language Family Frontend for LLVM.
https://clang.llvm.org/ Accessed on 2024-05-21.

[70] The Clang Team. 2024. Clang: Clang::DiagnosticsEngine Class
Reference. https://clang.llvm.org/doxygen/classclang_1_
1DiagnosticsEngine.html Accessed on 2024-05-21.

[71] The Clang Team. 2024. clang: clang::Rewriter Class Reference. https:
//clang.llvm.org/doxygen/classclang_1_1Rewriter.html Accessed on
2024-05-21.

[72] The Clang Team. 2024. ClangFormat. https://clang.llvm.org/docs/
ClangFormat.html

[73] The LLVM development community. 2024. The LLVM Compiler In-
frastructure Project. https://llvm.org/ Accessed on 2024-05-21.

[74] The LLVM development community. 2024. LLVM Language Reference
Manual. https://llvm.org/docs/LangRef.html Accessed on 2024-05-21.

[75] D. Verkest, K. Van Rompaey, I. Bolsens, and H. DeMan. 1996. CoWare—
A Design Environment for Heterogeneous Hardware/Software Sys-
tems. Design Automation for Embedded Systems 1, 4 (Oct. 1996), 357–
386. https://doi.org/10.1007/BF00209910

[76] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. 2015. Boolean
Satisfiability Solvers and Their Applications in Model Checking. Proc.
IEEE 103, 11 (Nov. 2015), 2021–2035. https://doi.org/10.1109/JPROC.
2015.2455034

[77] Bingyao Wang, Sepehr Noorafshan, Reto Achermann, and Margo
Seltzer. 2023. Synthesizing Device Drivers with Ghost Writer. In
Proceedings of the 12th Workshop on Programming Languages and Oper-
ating Systems (PLOS ’23). Association for Computing Machinery, New
York, NY, USA, 10–17. https://doi.org/10.1145/3623759.3624545

[78] Robert V. White. 2014. PMBus: A Decade of Growth: An Open-
Standards Success. IEEE Power Electronics Magazine 1, 3 (Sept. 2014),
33–39. https://doi.org/10.1109/MPEL.2014.2330492

[79] Xilinx 2020. Zynq UltraScale+ Device Technical Reference Manual.
Xilinx.

[80] Jeong-Han Yun, Gunwoo Kim, Choonho Son, and Taisook Han. 2006.
Automatic Generation of Hardware/Software Interface with Product-
Specific Debugging Tools. In Embedded and Ubiquitous Computing,
Edwin Sha, Sung-Kook Han, Cheng-Zhong Xu, Moon-Hae Kim, Lau-
rence T. Yang, and Bin Xiao (Eds.). Springer, Berlin, Heidelberg, 742–
753. https://doi.org/10.1007/11802167_75

[81] Feng Zhou, JeremyCondit, Zachary Anderson, Ilya Bagrak, Rob Ennals,
Matthew Harren, George Necula, and Eric Brewer. 2006. SafeDrive:
Safe and Recoverable Extensions Using Language-Based Techniques.
In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI ’06). USENIX Association, USA, 45–60.

https://doi.org/10.1145/1629575.1629583
https://doi.org/10.1145/1629575.1629583
http://dl.acm.org/citation.cfm?id=2685048.2685101
http://dl.acm.org/citation.cfm?id=2685048.2685101
https://alltransistors.com/superdatasheets/_pdf/09/ks0127.pdf
https://alltransistors.com/superdatasheets/_pdf/09/ks0127b.pdf
http://smbus.org/specs/index.html
https://doi.org/10.1145/1950365.1950382
https://doi.org/10.1145/2499370.2462183
https://doi.org/10.1145/2499370.2462183
https://opensource.antmicro.com/projects/artix-dc-scm/
https://opensource.antmicro.com/projects/artix-dc-scm/
https://doi.org/10.1145/1086228.1086230
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-I-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-I-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-II-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-II-20150313.pdf
https://pmbusprod.wpenginepowered.com/wp-content/uploads/2022/01/PMBus-Specification-Rev-1-3-1-Part-II-20150313.pdf
https://clang.llvm.org/
https://clang.llvm.org/doxygen/classclang_1_1DiagnosticsEngine.html
https://clang.llvm.org/doxygen/classclang_1_1DiagnosticsEngine.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/doxygen/classclang_1_1Rewriter.html
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormat.html
https://llvm.org/
https://llvm.org/docs/LangRef.html
https://doi.org/10.1007/BF00209910
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1145/3623759.3624545
https://doi.org/10.1109/MPEL.2014.2330492
https://doi.org/10.1007/11802167_75


Efeu: generating efficient, verified, hybrid hardware/software drivers for I2C devices EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

A Artifact Appendix
A.1 Abstract
This artifact includes the Efeu compiler (ESMC) and the
ESI/ESM specifications of the systems that we have modeled.

A.2 Description & Requirements
A.2.1 How to access. The artifact is publicly available at
https://gitlab.inf.ethz.ch/project-opensockeye/efeu. It con-
sists of two repositories: the compiler is in the Efeu compiler
repository and the specifications in Efeu Models. The ver-
sion of the artifact used for the paper is on branches called
eurosys-25 and persistently indexed at https://zenodo.org/
doi/10.5281/zenodo.13734520.

A.2.2 Hardware dependencies. Nothing requires signifi-
cant computing resources, except for Experiment 3, where
we recommend using a machine similar to our platform (sec-
tion 4.3) with at least 64GB RAM and 128GB swap memory.
We recommend using x86-64 machines.

A.2.3 Software dependencies. We recommend the use of
our pre-built Docker image. For installation instructions for
Docker, see https://docs.docker.com/engine/install/. Without
Docker, you need a UNIX-like OS like Ubuntu 22.04 where
all the necessary dependencies can be installed with the
following command:
$ sudo apt-get update && sudo apt-get install cmake llvm-15\

llvm-15-dev llvm-15-tools clang-15 libclang-15-dev \

gcc g++ gcc-aarch64-linux-gnu g++-aarch64-linux-gnu \

spin python3 python-is-python3 python3-numpy python3-\

pandas python3-matplotlib less hyperfine cloc clang-\

format

A.2.4 Benchmarks. All benchmarks are in the artifact.

A.3 Set-up
The first step is to get the Efeu source code by cloning the
repositories Efeu compiler and Efeu Models and switch-
ing to the eurosys-25 branch in both. We assume that the
repositories are in a directory stored in a shell variable called
${EFEU_ARTIFACT}.
The README.md file in the compiler repository describes

how to build the Efeu compiler from source and run its test
suite. The README.md file in the models repository then de-
scribes how to configure a native build environment. We
recommend however using the pre-built Docker image we
provide that contains the compiler binaries and additional
dependencies. To create the artifact container, run the fol-
lowing commands:
$ docker create -it --name efeu-artifact --user efeu-\

builder -v ${EFEU_ARTIFACT}/efeu-models:/home/efeu-\

builder/efeu-models -w /home/efeu-builder/efeu-models \

registry.ethz.ch/project-opensockeye/efeu/models-build\

:eurosys-25

$ docker start efeu-artifact

$ docker exec --user root efeu-artifact groupmod -g $(id -g\

) efeu-builder

$ docker exec --user root efeu-artifact usermod -u $(id -u)\

-g $(id -g) efeu-builder

$ docker stop efeu-artifact

You can then start and attach to the container using the
following command:

$ docker start efeu-artifact && docker attach efeu-\

artifact

Next, create two build directories: one for a default build
that excludes the long-running verifiers and the other one
for an extended build with all the verifiers.
$ mkdir build build-extended

$ cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++ -S \

. -B build

$ cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++ -\

DEXTENDED_BENCHMARKS=ON -DTIMEOUT_COMMAND='timeout 30m\

' -DTIMING_COMMAND='hyperfine --runs 5' -S . -B build-\

extended

You can run experiment 1 to test whether you have a
working setup.

A.4 Evaluation workflow
A.4.1 Major Claims. Here we list all of our major claims
and their corresponding experiments below.

C1. Efeu generates Promela models and hardware/soft-
ware implementations of the standard I2C stack (section 2.3)
and the non-standard devices (section 4.5) from the specifi-
cation. This is supported by experiment E1.

C2. Efeu reduces the development cost and avoids human
errors by automating the translation from the specification to
models and implementations. The size of the generated code
is reported in Table 1 and Table 3, which can be reproduced
by E2.

C3. The (whole or partial) standard I2C stack with one or
more EEPROMs can be verified in reasonable runtime and
the abstraction levels help improve the scalability, as shown
in Table 2 and Figure 9. This can be reproduced by E3.

C4. Non-standard devices described in section 4.5 can be
modeled and verified with minimal manual changes. This is
demonstrated by E4.

C5. Linux bit-banging I2C driver cannot achieve the target
transmission speed, while Efeu-generated hybrid hardware/-
software drivers achieves the target performance matching
the Xilinx I2C IP crafted by human experts, as described in
section 5.2. This corresponds to E5 and E6.

C6. Linux bit-banging I2C driver has 100% CPU usage,
while Efeu-generated hybrid hardware/software drivers in
the interrupt-driven mode consumes minimal CPU as de-
scribed in section 5.3. This corresponds to E5.

https://gitlab.inf.ethz.ch/project-opensockeye/efeu
https://zenodo.org/doi/10.5281/zenodo.13734520
https://zenodo.org/doi/10.5281/zenodo.13734520
https://docs.docker.com/engine/install/


EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Daniel Schwyn, Zikai Liu, and Timothy Roscoe

C7. Efeu-generated hybrid hardware/software drivers con-
sume minimal FPGA LUT and FF resources, as detailed in
section 5.4. This corresponds to E7.

A.4.2 Experiments. All the following commands should
be executed at the root of the model repository. The time
estimates are of the form [human + compute].

Building and evaluating hybrid hardware/software drivers
on real hardware as described in section 5 requires access
to special equipment (e.g. licensed Xilinx Vivado, the Ultra-
Scale+ board, an EEPROM, and an oscilloscope). It is there-
fore out of the scope of this artifact evaluation. However, we
provide raw data we collected and the scripts to reproduce
the results for claims 5–7 in experiments 5–7.

E1. [1min + 15min] First invoke the Efeu compiler through
the build system (CMake) to generate all code (Promela, C,
Verilog, VHDL) of all configurations. Then run the basic set
of verifiers. You can do so using the following command:
$ cmake --build build/ -t all verify-all

The build and verification should report no errors. You can
find the generated files in build/systems. The verification
going through confirms that all the verification code has been
correctly generated. To test that the generation of the driver
binaries worked correctly, you can run them. As mentioned,
most require specialized hardware, but there is one that
simulates an EEPROM and writes 14 bytes, then reads 4 of
the bytes back. You can run it as follows:
$ ./build/systems/eeprom/eeprom/impl/linux-test/top-down-c1\

-r1/sys-cmp_eeprom_linux-test_top-down-c1-r1

The output should contain the following two lines that
show the results of the write and read:
[CWorld] res: CE_RES_OK

[CWorld] res: CE_RES_OK [2]42 [3]43 [4]44 [5]45

E2. [1min + 1min] Count lines of code. We provide a script
for formatting and counting. The following commands en-
sure that all the code is generated and then run the script to
print lines of code corresponding to Table 1 and Table 3:
$ cmake --build build/

$ ./data/ae/count-loc.py

E3. [1h + 15h] Run all verifiers and get runtime. The Ver-
ifiers are invoked through CMake. We provide a script to
extract the runtime from the CMake log. Running all veri-
fiers in section 4 takes hours. We recommend first trying out
the data processing script with the provided log files:
$ ./data/ae/process-verification-runtime.py

The script prints aggregated data as shown in section 4
and generates a figure resembling Figure 9. By default, it uses
the provided log in the artifact, unless new log files named
./data/ae/ae-*.log are found. To execute all verifiers and
generate those new log files, use the following command:

$ cmake --build build-extended -t verify-all -- -j1 -k | \

tee ./data/ae/ae-$(date +%Y%m%d%H%M%S).log

Note that this command invokes CMake in the extended
build directory. Running all verifiers will take hours (you
may want to use screen or similar utilities if using a remote
server). Some verifiers with higher payload length or larger
number of EEPROMs will likely time out or run out of mem-
ory. To reduce the necessary user interaction, the command
supplies the -k option to continue with other verifiers, even
if one fails to complete. To only run the set of verifiers used
in Figure 9 replace verify-all with verify-eurosys25.
To process the newly acquired log files, rerun the data

processing script. It will list the verifiers for which it can-
not find timing data in the logs. To run them, replace the
verify-all target with one suggested by the script. The
script will process all log files it finds to aggregate data from
several runs.

E4. [1min + 5sec] Compares the ESM specification of
KS0127 and Raspberry Pi I2C with the standard I2C stack.
$ diff -u systems/standard/layers/_Byte.inc.esm systems/\

ks0127/layers/_Byte-KS0127.inc.esm

Note that this ESM file is shared by the controller and
the responder. Excluding comments, The KS0127 Byte ESM
adds 13 lines for responder (in line 67 to 93) and 10 lines
for controller (in line 113 to 145). Similarly, the following
command compares the controller Symbol of Raspberry Pi
with the standard one.
$ diff -u systems/standard/layers/CSymbol.esm systems/\

raspberry-pi/layers/CSymbol-no-stretching.esm

E5. [1min + 5sec] Compute transmission frequencies and
variations from data collected from the oscilloscope.
$ ./data/ae/timing-and-cpu.py

The script processes the CPU usage data and the timing
data of rising and falling edges of SCL. A figure closely re-
sembling Figure 10 will be created. Warnings about “invalid
values encountered in reduce” can be ignored.

E6. [1min + 5sec] Plot waveforms in Figure 11 from raw
data collected from the oscilloscope.
$ ./data/ae/waveform.py

The script will create a figure closely resembling Figure 11.

E7. [1min + 5sec] Reproduce Figure 12 and Figure 13 from
the original reports from Xilinx Vivado.
$ ./data/ae/fpga-utilization.py


	Abstract
	1 Introduction
	2 Background and problem statement
	2.1 The importance of I2C and related protocols
	2.2 What makes I2C different?
	2.3 The I2C protocol stack and ecosystem

	3 Efeu design and implementation
	3.1 Specifying the driver stack
	3.2 Efeu compiler overview
	3.3 C backend
	3.4 Verilog backend
	3.5 Generating hybrid hardware/software drivers
	3.6 Promela backend

	4 Verification
	4.1 Approach
	4.2 Verification code size
	4.3 Verification runtime
	4.4 Scalability
	4.5 Non-standard devices

	5 Evaluation on real hardware
	5.1 Source code size
	5.2 Achievable bus speeds
	5.3 CPU usage
	5.4 FPGA resource utilizations
	5.5 Discussion

	6 Related work
	6.1 Hardware/software co-design
	6.2 Driver synthesis
	6.3 Driver verification

	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow


