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Abstract—We developed a set of tools designed to provide
rapid feedback to students as they learn to write programs in
assembly language (LC-3, a RISC-like educational instruction
set architecture). At the heart of the system is an extended
version of KLEE, KLC3, that enables us to both identify issues
and perform equivalence checking between student code and a
gold (correct) version of each assignment. Feedback begins when
students edit their code using a VSCode extension that leverages
static analysis to perform a variety of correctness and style
checks, encouraging students to improve their code quality. Each
time a student commits code to their Git repository, our system
triggers. Using KLC3 (KLEE), the student code is executed along
with the gold version, and issues and behavioral differences are
delivered back to the student through their Git repository as
a human-readable report, test cases, and scripts. A queueing
system allows students to monitor progress, but responses are
generally available within minutes. We also extended the LC-3
simulation tools to support reverse debugging, making the process
of finding complex bugs much more tractable for students,
and used Emscripten to develop a browser-based interface for
use in testing and debugging. Finally, our system maintains an
individual regression test suite for each student and requires
a submission to pass all previous tests before re-evaluation in
KLC3, thus avoiding encouraging programming-by-guesswork.
We deployed the system to provide feedback for the assembly
programming assignments in a class of over 100 students in
Fall 2020. Students wrote a median of around 700 lines of
assembly for these assignments, making heavy use of our tools
to understand and eliminate their bugs. Anonymous student
feedback on the tools was uniformly positive. Since that semester,
we have continued to refine and expand our tools’ analysis
capabilities and performance, and plan to deploy the system again
in the near future (the class is offered every Fall).

I. INTRODUCTION

Learning to program is difficult. As with all topics, students
learn more quickly when given immediate feedback tailored to
their efforts. However, while university staff—instructors and
teaching assistants—are capable of providing such feedback,
staff are not available 24/7 and lack the time needed to provide
individual attention to each student’s programs.

Automating feedback has been an important topic for
years, and systems such as Web-CAT[1] are widely-used in

classes. We address the need for rapid feedback by leveraging
KLEE [2] to perform both symbolic analysis of student code
as well as equivalence checking with a correct implementation
of the given assignment. In our class, students first program
in assembly language for the LC-3 instruction set architec-
ture (ISA), which was invented for educational purposes in
the textbook by Patt and Patel [3]. The symbolic equivalence
checking that forms the core of our feedback system was one
of the approaches explored by the early KLEE work [2]. Use of
KLEE in providing rapid feedback on student programs writ-
ten in C was pioneered by Gao [4], but the focus in that work
is on C programs supported by the standard KLEE/LLVM in-
frastructure. In fact, most feedback systems focus on high-level
languages [5], and few make use of symbolic analysis. This
paper represents the first use of symbolic analysis to provide
rapid feedback on LC-3 assembly programs through in-depth
customization of KLEE, and describes the implementation and
results of deployment as an end-to-end system.

We decided to make use of the low-level infrastructure
provided by KLEE but to implement our own modules for
preliminary LC-3 code analysis, LC-3 state execution, a 16-bit
memory model, and search heuristics. We also generalize the
idea of loop reduction [6] to accommodate the multi-entry-
point loops often found in assembly language programs. Also,
as we felt that the KLEE output might be difficult for novice
programmers to understand and utilize, we developed issue
filtering and human-readable report and script generation to
help students through their first significant debugging efforts.
We refer to our extended KLEE as KLC3.

We then extended the tools surrounding KLC3 to allow stu-
dents to make use of more familiar interfaces, such as VSCode
for editing and real-time static checks as well as Git to submit
their code and receive the KLC3 analysis and feedback results.
Finally, we added support for reverse (back-in-time) debugging
to the existing LC-3 simulation tools and made them available
through a browser interface by leveraging Emscripten [7] and
minor modifications to the C implementations of the tools. As
we extended the tools around KLC3, our system is able to to



cover the whole workflow of editing, testing and debugging
when students work on their assignments.

After developing much of this framework, we deployed it to
provide feedback to over 100 students taking our introductory
assembly language and C programming course in Fall 2020,
providing us with several thousand code samples as well as
an opportunity to survey student opinions about the tools.

The remainder of this paper is organized as follows. In the
next section, we provide additional details about our Fall 2020
deployment and student use as background. In Sec. III, we
describe our LC-3 extension to the VSCode editor [8] that
provides feedback as students edit their programs. Sec. IV then
provides an overview of the system from when the student
commits a new copy of an assignment through when they
receive feedback. We follow with details of our extensions
to KLEE in Sec. V. After deploying the system, we made
a number of further optimizations, two of which we explain
in Sec. VI. In Sec. VII, we discuss changes made to the
LC-3 simulation tools (provided with the textbook) to support
reverse debugging, and the browser-based interface that we
developed. Sec. VIII provides timing information about the
speed at which we are now able to offer feedback on student
programs. Sec. IX describes a few other aspects of our system,
including a summary of student feedback, and compares
our approach with the commonly used Web-CAT[1]. Finally,
Sec. X offers our conclusions.

II. DEPLOYMENT CONTEXT

Prototype versions of most of the tools developed for
this project were ready in the Fall 2020 semester, so we
deployed them for use in providing feedback to students tak-
ing our introductory assembly language and C programming
course. Conditions were fairly normal despite the COVID-19
pandemic: students and teaching assistants were resident on
campus and made use of the usual classrooms and computer
labs. The instructor, however, gave lectures live over Zoom,
using multiple cameras to observe the students and to hear any
questions. A video inset of the instructor enabled students to
see gestures and facial expressions. While the interaction was
not identical to a normal semester, we believe that it was as
close as possible in the physical absence of the instructor.

A total of 109 students completed the course. Each student
implemented three assignments over four weeks using LC-3
assembly language. Each assignment is built upon the previous
one by including a student’s previous code directly. In the
first assignment, which we call SUBROUTINES here, students
were required to write two subroutines to perform formatted
output to the display. In the second assignment, SCHEDULE,
students populated a weekly schedule with events, then printed
the schedule to the display. Each event consisted of a name,
an hour, and a bit vector of the days in a week on which
the event occurred. Finally, in the third assignment, DFS,
students implemented a depth-first search with backtracking
to fit additional events with flexible hours (again specified by
a bit vector) into an existing weekly schedule. Students wrote
a median of 693 lines of LC-3 code for the three assignments.

Since students received feedback each time they committed
their code to the Github server, they were inclined to commit
as they made progress, providing us with 1079 code samples
for SUBROUTINES, 1474 samples for SCHEDULE, and 960 for
DFS. For automating feedback, we also made use of correct
implementations authored by the course staff.

The KLC3 feedback system was linked to the assignment
submission system, so feedback was automatic for all students.
We did not maintain a control group, as we felt it unfair to
deprive students of the opportunity for feedback from KLC3.
In this paper, we instead compare with a nearly identical
version of the class held two years earlier, in which the same
instructor presented the same material to students in person
on the campus. Students and other course staff were different,
of course. Students were not forced to make use of the LC-3
VSCode extension, and the survey results suggest that only
about half did so. Students were also not forced to make use
of our browser-based LC-3 tools, but about two-thirds did.

III. EDITING IN VSCODE

Initially, we added basic static checking into KLC3 to
identify problems such as dead code, but we wanted to give
students feedback as early as possible. VSCode [8] is a popular
editor amongst students in later programming classes, so we
decided to encourage students to try it by developing an LC-3
extension that gives real-time feedback as students edit their
code. By delivering appropriate warnings to students before
they submit their code, we also enable them to fix potential
bugs before they commit to their repositories and add load to
our analysis server.

The VSCode extension reports three kinds of feedback:
errors, warnings, and information. Errors imply that the code
cannot assemble. Warnings indicate potential bugs or poor
style. Information shows the results of analyses on the code,
such as which registers in a subroutine are callee-saved (have
their values preserved by the subroutine).

Our VSCode extension implements per-instruction analysis,
control flow analysis, and procedure-based analysis. Feedback
messages about potential issues in the code are conveyed via
VSCode’s squiggles and pop-up windows.

Although none of the extension’s feedback is specific to any
particular assignment, nor does the extension have any infor-
mation about what constitutes correct behavior, we observe
that the ability to convey meaningful feedback messages to
students while they write their code may still increase their
expected functionality grade in assignments. Functionality
grade is the part of a student’s grade allocated to correct
behavior, as opposed to points obtained for demonstrating
good coding style and including adequate comments. Using the
SUBROUTINES program as an example, for which 770 code
samples assemble, we used our grading script to calculate the
functionality grade (out of 65) for each sample, then computed
an average functionality grade among samples for which our
extension reports the same number of warnings. The results
appear in Tab. I. Code samples that generate no warnings
often still fail to implement the assignment correctly, hence the



TABLE I
FUNCTIONALITY GRADES VS NUMBER OF WARNINGS

Number of Warnings Count Avg. Functionality Grade
0 492 46.9
1 169 36.0
2 42 40.9

3+ 67 35.9

Fig. 1. A canonical example of a fully-unrolled loop typical of those produced
by students not yet able to formulate iterative constructs.

average functionality grade for warning-free samples is not 65.
Nevertheless, grades for warning-free samples averaged over
10 points higher than samples that contain warnings, indicating
that feedback during editing can be helpful in guiding students
to develop correct solutions.

In addition to helping with correctness, early feedback can
also help students to avoid developing bad coding habits.
For example, while extending the idea of loop reduction
to assembly code (see Sec. VI-B), we found code samples
in which students, unable to formulate loops properly, had
instead written fully-unrolled loops. Fig. 1 shows a canonical
example, in which five adjacent addresses containing pointers
are checked for NULL (0), and a common value is written
from R3 to the address referenced by each non-NULL pointer
found. In the example, the branch instructions are independent,
creating 32 possible paths. In some samples, however, students
linked several such constructs, producing thousands of paths,
many of which were impossible to execute due to correlations
amongst the branches. Such style is not encouraged and a large
number of paths undermines the performance of our symbolic
analysis on the code. The extension identifies unrolled loops by
scanning through the code with different strides and detecting
repeated code segments that can potentially form a loop. When
the extension finds an unrolled loop, it raises a warning to
indicate that the code can be turned into a loop.

Interestingly, using the extension, we found that hand-
unrolled loops are common in student code, and that their
frequency depends strongly on the complexity of the particular
loop that students are asked to write. To illustrate this idea, we
compared the final versions of the DFS assignment of students
in the Fall 2018 semester with those of the Fall 2020 students.
The assignment was changed in minor ways to reduce the
likelihood of sharing code between semesters. In particular,
the days of the week were printed as three-letter abbreviations
in 2018, but as full names in 2020. Also, the encoding of

TABLE II
PERCENTAGE OF STUDENTS VS. NUMBER OF UNROLLED LOOPS

Number of Unrolled Loops Fall 2018 Fall 2020
0 36% 14%
1 29% 31%

2+ 35% 55%

days in the bit vector for each event was reversed: in 2018,
Monday was represented as 1, Tuesday as 2, and so forth. In
2020, Monday was 16, Tuesday was 8, and so forth.

The results are in Tab. II: failure to write loops is generally
common in both classes, but is more common amongst the
2020 students. In terms of the assignments, the slight changes
produced visible differences in the results by changing the
complexity to conceptualize loops. Specifically, the variable-
length weekday names complicate the process of finding the
starting address of each string, and the reversal of bit vector
ordering makes using these data more challenging because the
LC-3 ISA makes left shift easy, but right shift difficult.

Fortunately, our VSCode extension is able to identify hand-
unrolled loops and to raise warnings, as shown in Fig. 1 by
the squiggles under the LD instructions—the first instruction
in the loop body—to encourage students to think harder or to
seek help for implementing a loop.

Fig. 2. Overview of dynamic code analysis system.

IV. DYNAMIC ANALYSIS OVERVIEW

An overview of our dynamic code analysis system appears
in Fig. 2. The system consists of four main components: a
GitHub server maintained by the university, a Webhook server,
a job dispatcher, and the KLC3 execution engine. When a
student submits a new version of a program by pushing code,
the GitHub server immediately notifies the Webhook server,
which is implemented as an HTTP server in Golang. The
Webhook server filters out events other than modifications to
the program residing in the master branch of the student’s
current assignment, then applies any policy decisions to the
submission. Generally, we limited each student to one new
evaluation every five to ten minutes in order to discourage
students from attempting guesswork while debugging. The
exact policy varied by assignment and is easily modifiable.
Approved new submission events are wrapped up as KLC3
execution tasks and sent to the job dispatcher. The job



Fig. 3. KLC3 architecture and workflow.

dispatcher is also implemented in Golang, allowing us to
leverage Go’s channel abstraction to implement a queue and
then to parallelize execution of multiple KLC3 executions
on our server. The job dispatcher uses four worker threads
that continuously fetch tasks from a single queue. For each
submission drawn from the queue, a worker updates a local
copy of the student’s Git repository using the go-git library [9],
extracts the submission, and forks off a instance of KLC3
to analyze the student’s code. Once KLC3 has produced a
report and associated files, the worker incorporates everything
into a new directory in a “feedback” branch of the student’s
repository. The directory name indicates both the assignment
and the date and time at which the student pushed the new
version, allowing students to easily locate their feedback. The
worker then returns to the queue to obtain a new assignment.
Students can view the report on the GitHub websites or by
updating their own local Git repositories. We also provide
a web interface to our queue system to enable students to
monitor queue status and to display KLC3 reports. For this
purpose, we make use of the OAuth2 API of the Github server.

To encourage students to make use of test cases generated
by KLC3 (see Sec. V) and to discourage programming-by-
guesswork, we implemented a regression test system. A private
class repository is used to maintain sets of regression tests for
each student, each of which is initialized to the test cases
provided with the assignment. Before analyzing code, KLC3
re-evaluates all regression tests. Only code that passes all such
tests is then analyzed symbolically. Newly generated test cases
are added to the regression test suite, so a student’s next
submission must pass the new tests as well.

V. KLC3 ARCHITECTURE

KLEE offers a well-defined infrastructure for symbolic
representations, optimizers, caches and interfaces with SMT
solver backends, upon which higher-level modules such as the
LLVM IR executor are built. KLC3 is similarly built upon
the KLEE infrastructure (with a few modifications), but we
replaced the higher-level modules with our own code, includ-
ing an LC-3 symbolic executor, a 16-bit-addressable memory
model, code flow analyzers, state searchers, and generators

for test cases and human-readable reports. Fig. 3 illustrates
the structure of KLC3, our modified KLEE architecture.

A. LC-3 Assembly Parser and Symbolic Executor

Rather than requiring instructors to learn the KLEE API, we
developed a set of annotations on LC-3 assembly files through
which instructors can specify symbolic variables as well as
constraints, identify different types of memory regions (read-
only, uninitialized but accessible, and so forth), and select
types of output to be compared between student and gold
codes to generate behavioral issues. Users can also override
the default behavior, messages, and hints provided by the
different types of issues tested by KLC3, and can to a limited
extent define new issues. The input files are parsed along with
command-line options to automatically generate the equivalent
of the additional C code normally required for use with KLEE.

Our symbolic executor enables KLC3 to support direct
symbolic execution of LC-3 code even when that code is
questionable or obviously buggy. For example, a jump vio-
lating subroutine call/return semantics can be executed rather
than immediately terminating the state (some students did so
intentionally), although such operations are not encouraged
and KLC3 does raise a warning by default. With precise
control of each instruction, KLC3 is able to reproduce the
exact behavior of the official LC-3 simulator (lc3sim), which
is critical when students debug their code using the generated
test cases in lc3sim. Detection of more subtle problems, such
as using uninitialized registers, can also be performed in a
more controlled manner.

B. Issue Detection and Equivalence Checking

KLC3 executes an LC-3 program and detects any im-
proper operations by the code, such as out-of-bound memory
accesses. When applied to a programming assignment and
provided with a correct version of the assignment solution
(a gold version), KLC3 not only detects the problems in
the test program itself, which we call execution issues, but
also performs equivalence checking between the test program
and the gold version, thus identifying any behavioral issues
between the two.

Execution issues typically indicate undefined or irrepro-
ducible behavior or the possibility of a crash when the
program executes. For example, KLC3 can detect the use of
uninitialized registers. When a program starts, all registers are
considered to be uninitialized. If a test program state uses a
register without first writing a value into the register, KLC3
raises an issue for that state. Most execution issues arise in
the executor, but some rely on control flow analysis, such as
identification of improper subroutine structure, in which a state
executes a RET (return) instruction that does not return to the
instruction after the most recent JSR (jump to subroutine)
instruction.

The set of execution issues reported by KLC3 was devel-
oped based on experience with student code. Initially, we
reported only a few common mistakes based on our own
experience, such as reading uninitialized memory or registers.



Fig. 4. Equivalence checking between test program and gold program.

Early versions of KLC3 were then tested on student codes
from a previous semester (and later on students during Fall
2020 as they wrote their assignments), which helped us to
identify additional issues through manual analysis, such as us-
ing a symbolic value for the program counter (PC), overwriting
instructions, and broken subroutine calls. After testing several
hundred student codes, we arrived at a stable set of issues,
as detailed in the KLC3 manual (included in the replication
package [10]), which we may extend in future semesters.

Behavioral issues signify differences between the output
produced by a student’s code and that produced by the gold
code, for example, incorrect answers printed to the screen.
These issues are identified by comparing symbolic equality
for the display (an I/O device), memory, and registers after
a program terminates, as shown in Fig. 4. Specifically, when
a state of the test program terminates normally (instead of
encountering a terminating issue), its final path constraints are
used to launch a state of the gold program. After the gold
state terminates, the equivalence checker module symbolically
compares displayed output, memory, registers, and/or the last
executed instruction of the two states. If the gold state forks
to multiple states, all of them are compared with the test
state. Assignments typically specify comparison for a subset
of these possible outputs, so only those outputs relevant to the
assignment are compared, as specified in the KLC3 input files.
Divergence in the outputs raises behavioral issues.

C. Generation of Test Cases, Scripts, and Reports

Just like KLEE, KLC3 generates concrete test cases that
reproduce detected issues. Issues are frequently triggered many
times due to forked states and repeated execution of instruc-
tions. Ideally, each bug in a student’s code should be reported
exactly once. However, there is no easy way to localize bugs
in the test code, particularly behavioral issues. Issues triggered
on the same instruction may not necessarily result from the
same bug, while a single bug may trigger a series of issues at
different instructions. To avoid overwhelming students with
failed test cases, we filter the set of issues produced by
a student’s code before reporting them to the student. In
particular, we report only one instance of any given execution
issue at any location in a student’s program. In that way, for
example, if 50 states access illegal addresses at a particular

load instruction, the student sees only one report and one test
case. For behavioral issues (such as incorrect output), which
can’t be localized in the test code, only one instance of each
type is reported from a single run.

For each reported issue, a description, the instruction that
triggers the issue (for execution issues), runtime information
(such as the address accessed for memory issues and the
output for incorrect output issues), and sometimes a hint about
possible fixes for the issue, is provided to the student. Each
reported issue is associated with a subdirectory containing a
test case (one or more assembly files) and an LC-3 script. The
test case contains concrete values derived from the symbolic
subspace of the state that triggered the issue. The test cases
are designed to be used with the LC-3 simulator (lc3sim),
so students need understand nothing about KLC3 nor about
symbolic execution in general. Ideally, a test case follows the
same control path in lc3sim as it does in KLC3 and triggers the
same issues (except for a small number of pitfalls, as described
in the KLC3 manual [10]). The LC-3 script can be executed by
lc3sim to help the student load the test case and reproduce the
bug. Sample reports are available in the KLC3 manual [10].

VI. OPTIMIZATIONS

Timeliness is critical for effective feedback. Our goal is to
provide feedback within 5 minutes after any submission. Static
analysis in the VSCode extension is real-time, while achieving
such an aggressive goal in symbolic analysis requires tuning
of both the execution engine and input spaces. The raw speed
of the execution engine dictates the number and length of
paths that can be explored, and improving that speed enables
exploration of larger input spaces. Tightly-constrained input
spaces finish quickly, but may not expose bugs, while an overly
general input space may make KLC3 run out of time exploring
correct paths, thus again failing to expose bugs.

Most of our KLC3 optimizations had not been developed
in time for the Fall 2020 deployment, forcing us to use fairly
small input spaces, particularly for DFS, and thus to miss
some bugs in our analysis. Using the code samples that we
collected, we have been able to significantly improve KLC3’s
performance, and are now able to fully explore much larger
spaces while meeting our 5-minute goal for most submissions.

In this section, we describe two of the more interesting
optimizations: implementation of an additional cache within
one of the lower layers of KLEE, and extension of the loop
reduction algorithm [6] to assembly language in order to
sidestep path explosions within loops.

A. IndependentElementSet Cache

The IndependentSolver module of KLEE removes irrelevant
constraints from SMT queries before passing them to the
next-level solver [2]. To identify the relevant constraints, the
solver iterates through the query expression to construct an
IndependentElementSet, a set of symbolic variables that are
involved in each constraint and the query expression.

We noticed that student code samples produced large num-
bers of IndependentElementSets: for the 909 DFS samples that



TABLE III
TIMEOUT RATES FOR 960 DFS SAMPLES WITH AND WITHOUT THE

INDEPENDENTELEMENTSET CACHE

Timeout in Minutes Cache No Cache
5 13.54% 65.10%
10 5.31% 22.08%

assemble and require 10 minutes or less to analyze, the average
number of IndependentElementSets constructed is 2.20× 108.
Constructing such a large number requires substantial time.
We also noticed that student code samples led to significant
overlap in the constraints on queries issued by KLC3. For
example, the constraints defining the input space are included
in every query issued to the IndependentSolver. Given the cost
of construction and the overlap in constraints, we decided
to investigate adding a cache that maps symbolic constraint
expressions to IndependentElementSets.

An effective cache must have a reasonably high hit rate
and speed when results are cached. As KLEE infrastructure
uses dynamic allocation for symbolic expression instances,
cache comparisons can be either pointer-based or value-based.
Pointer hashing and comparison are fast, but fail to match
identical expressions if they are constructed separately (in
different states, for example). Value-based hashing and com-
parison require walking through the nested expressions, which
takes more time. We evaluated both approaches (and also a
hybrid) and found that, for the purpose of KLC3, pointer-based
comparison achieves a high hit rate and provides a substantial
performance boost for most student codes.

For the 960 DFS samples that assemble, we measured the
KLC3 analysis time up to 10 minutes with the cache enabled,
and up to 15 minutes with the cache disabled (to capture
performance information more accurately). In light of our
5-minute feedback goal, we summarize the fraction of samples
that require more than 5 and 10 minutes of analysis in Tab. III.
We then eliminated samples that timed out as well as those that
finished within 5 seconds (to reduce measurement errors). For
the remaining 803 samples, the fraction of baseline (no cache)
analysis time required with the cache appears in Fig. 5. The
geometric mean of the fraction is 0.288—an average speedup
of 3.47×. The cache hit rate is over 99.9% for more than
98.5% of the DFS samples. Use of the cache for SCHEDULE
samples shows a similar result: for 1239 samples that neither
time out nor finish within 5 seconds, the geometric mean of
the analysis time ratio is 0.273—a speedup of 3.67×.

B. Loop Path Reduction on LC-3 Programs

Loop reduction is effective in reducing KLEE execution
time while maintaining high code coverage and bug detection
for student C programs [6]. The key observation behind loop
reduction is that even simple control flow within a loop body
can produce an exponential number of paths over multiple
loop iterations, but rarely are most such paths relevant to
identifying bugs. Loop reduction identifies all paths through
a loop body and prioritizes execution of states that cover
previously unexplored paths through the loop body, while at

Fig. 5. Impact of the IndependentElementSet cache: distribution of analysis
time reduction ratios for 803 DFS samples. The orange line shows the
cumulative fraction of samples with reduction ratios below a given value.

the same time de-prioritizing or even avoiding execution of
states that follow paths through the loop body that have already
been covered by other states. The original loop reduction
algorithm assumed that every loop had only a single entry
point, which holds for any C program that doesn’t use goto
statements, and is also true in most C programs that do make
use of goto (generally for exception handling).

In contrast, the single entry point assumption for loops fails
to hold for many programs written in assembly language.
Without C statements such as if for, and while, loops in
assembly are constructed purely from branches and jumps,
generally resulting in more complicated control flow and less
clearly defined structure. As a result, we had to generalize the
loop reduction algorithm to accommodate the more flexible
forms of control flow used by our students (and in our
own solutions to the assignments). We then implemented the
generalized version of loop reduction and tested it on the
samples collected from our class.

Loop structures in an LC-3 program must be identified and
extracted automatically based on control flow analysis. The
first step is to construct a control-flow graph (CFG), in which
the nodes are basic blocks (sequences of instructions with
a single entry point and no control flow except for the last
instruction) and arcs connect each node to any other node that
may follow it in dynamic execution. In this paper, we consider
only the context of control flow within a single, well-defined
subroutine (we do not apply the algorithm to codes in which
subroutine structure is defined improperly, whether we detect
such behavior statically or dynamically).

Starting with the CFG for a subroutine, we identify all
strongly connected components (SCCs). Each SCC forms one
or more of the outermost loops within the subroutine. For
each SCC, we then identify each possible entry point—the
CFG nodes at which arcs from outside the SCC arrive. For
an SCC S, let’s call one such entry point e. The node e
forms one outermost loop, L(e, S). Other entry points may
form additional loops with the same code (the SCC S); often,
these are used to implement similar but separate operations in
the assembly code. A C compiler might produce such code if
it found common subexpressions or common code sequences



within a single subroutine, for example.
For each loop L(e, S), we identify all paths through a single

iteration of L. In one iteration, loop L can either terminate or
continue to another iteration. Continuing to another iteration
we interpret as returning to e, and the Head to Head (H2H)
paths are defined as all paths that form simple cycles within S,
starting and ending at e. Similarly, the Head to Exit (H2E)
paths are defined as all simple paths that start at e and exit S
(without returning to e). We can then define the exit nodes for
loop L(e, S) as the set of CFG nodes outside of S at which
one or more of the H2E paths of loop L terminate.

The nested loops (subloops) of a loop L(e, S) consist of
all loops in S\ {e}. In other words, a subloop has at least
one H2H path in its parent loop that doesn’t pass through
the entry point of the parent loop. For each loop, we identify
nested loops by executing recursively on the CFG induced by
the nodes in S\ {e}, noting that the H2E paths of a subloop
may also exit any number of containing loops as well.

During static analysis, we identify loop paths as follows.
We define an H2H(H2E) segment of a loop as an H2H(H2E)
path of the loop, but with each arc within any subloop replaced
by a single virtual edge from the entry node to the exit node.
In other words, the subpath in the subloop is invisible to the
parent loop except for the entry and the exit nodes. The number
of H2H(H2E) segments in a parent loop can be less than the
number of H2H(H2E) paths, as multiple subpaths through a
subloop are counted as one segment in the parent loop if the
subpaths share the same exit node.

As loop analysis is static, dynamic jumps are not allowed.
Subroutine calls are assumed to return and are summarized as
a single edge from the call to the next instruction in memory
(at the return address). Beginning with the most nested loops,
loops and their segments are identified through depth-first-
search (DFS) starting from each subroutine’s entry point. The
algorithm is shown in Fig. 6.

We implemented the sample coverage update algorithm
from [6] to track loop coverage in KLC3. The algorithm
uses a stack to record the current loop nest in each state
and to update H2H and H2E coverage. We also implemented
the StatePruningSearcher from [6], except that postponed
states are selected randomly for reactivation, without check-
ing constraint compatibility with the uncovered path. Unlike
LLVM IR, LC-3 uses only the sign of the last operation’s
result to control conditional branches. Branch outcomes and
constraints thus depend on both the preceding instructions as
well as the control flow path into the branch, which is hard to
determine without actually executing postponed states. Rather
than making complicated speculations and incurring additional
solver overhead, we chose to select a state randomly.

Among 1363 SCHEDULE samples, generalized loop re-
duction reduced analysis time for 307 (22.52%) of them.
Excluding 26 samples that reported 0-second analysis, the
average speedup for the samples that benefit is 9.67× faster
than the original DFS search heuristic. After acceleration, the
analysis time of the 307 samples ranges from 0 to 16 seconds,
with 91.21% (280) finishing within 5 seconds and an aver-

1: function ANALYZELOOPDFS(u, G, parent, path)
. G is the parent loop SCC excluding its entry node

2: l ← none
3: if u is the entry of a known loop l0 then
4: if l0 ⊆ G then . required for l0 to be a subloop
5: parent.subLoops ← parent.subLoops ∪ {l0}
6: l ← l0
7: else
8: if u ∈ SCC S of G of size > 1 then . found a new subloop
9: l ← new loop with entry node u and SCC S

10: parent.subLoops ← parent.subLoops ∪ {l}
11: ANALYZELOOPDFS(u, S\ {u}, l, empty path)

12: if l is not none then . reached existing/new subloop
13: E ← l.h2eEdg . skip paths in the subloop
14: else if u is a subroutine call then
15: E ← {(u, u.next)} . skip subroutine and assume it returns
16: else
17: E ← u.outEdges

18: for all (u, v) ∈ E do
19: if v = parent.entry then . reach the the parent’s entry
20: parent.h2hSeg ← parent.h2hSeg ∪ {path+ (u, v)}
21: else if v /∈ G then . exit the parent loop
22: parent.h2eSeg ← parent.h2eSeg ∪ {path+ (u, v)}
23: parent.h2eEdg← parent.h2eEdg∪{(parent.entry, v)}
24: else . still in the parent loop
25: ANALYZELOOPDFS(v, G, parent, path+ (u, v))

Fig. 6. Analysis algorithm for generalized loop reduction.

age of 2.30 seconds. Among 960 DFS samples, 69 (7.19%)
samples were accelerated. Again excluding 4 samples which
reported 0-second analysis, the average speedup is 37.89×,
the resulting analysis times range from 0 to 63 seconds, and
the average time is 4.55 seconds.

We did observe one DFS sample for which loop reduction
finished early but reported no issues, whereas issues were
found without loop reduction. Considering how quickly the
analysis finishes for the samples that benefit from loop re-
duction, we believe that we can simply execute the DFS
search heuristic if loop reduction terminates without finding
any issues in a student’s code.

The fraction of LC-3 samples that benefit from loop reduc-
tion is lower than we had expected based on the C programs
reported in [6]. While investigating this issue, we found that
many of our samples contain unrolled nested loops, which
produce large numbers of segments in the outer loops. Some
of these segments may be difficult or impossible to cover with
a limited input space. In fact, some samples contain provably
uncoverable loop paths, sometimes due to poor style, such as
consecutive branches based on the same condition. While we
have found many such samples by hand, however, we have yet
to identify fast and efficient ways to eliminate the impossible
segments automatically, as most of the issues are more subtle
than consecutive branches.

As another effect of samples with many paths, loop analysis
can sometimes add significant time, on the order of tens of
seconds. However, since the programs that benefit from the
technique are those for which the analysis finishes quickly, we
can set a limit of a few seconds on analysis time and thereby
avoid any practical impact on the KLC3 response time.



VII. TESTING AND DEBUGGING ENVIRONMENT

Programmers often rely on “cyclic debugging” [11], in
which a program is relaunched to reproduce a single bug.
However, restarting a program doesn’t necessarily produce the
same bug at the same place. Such difficulties are especially
confusing for novice programmers. On the other hand, even
when a bug can be reproduced, identifying its source often
requires some kind of unexpected program behavior to be
noticed, whereas the “reason” for the bug occurs earlier in
the program’s execution, forcing the programmer to use a
combination of re-execution and reasoning to determine the
cause. Enabling a debugger to support reversing execution
back to the cause of the bug thus becomes attractive.

Students debug LC-3 programs by executing them under
the control of the LC-3 simulator, lc3sim. In order to make
debugging easier for our students, we extended this simula-
tor to support reverse execution, sometimes called back-in-
time or omniscient debugging. Two main approaches have
been developed to support reverse execution: recording and
reconstructing [11]. The recording method saves necessary
trace information for each step of execution and uses this
information to “undo” the effect of each step when executing
in reverse. This method usually results in a large log and often
requires hardware support for acceptable performance. The
reconstructing method instead saves checkpoints (full state
information) during forward execution. To perform reverse
execution, the method reloads the closest checkpoint before the
desired reverse execution stopping point, then executes in the
forward direction to reach that stopping point. Reconstructing
requires less log information and less hardware support, but
checkpoint positions must be chosen carefully, making the
approach less flexible than the recording method.

We chose to implement the recording method in the LC-3
simulator. LC-3 is a 16-bit ISA with 8 general purpose regis-
ters, so the architectural state is small, allowing state changes
to be recorded in a compact log. And, as the LC-3 simulator
uses software to simulate execution of LC-3 instructions,
recording trace information at the ISA level does not add
substantial overhead to instruction execution. We also felt that
students benefit from the speed of reverse execution based on
the recording approach, in which single instructions can be
executed at approximately the same speed in both directions
in time, allowing students to go easily back and forth in their
code’s execution trace.

The reverse execution functionality relies on two modules
of the original LC-3 simulator: the first, the user interface
module, handles three kinds of commands: information com-
mands, management commands, and execution commands.
Reverse execution is closely related to the execution com-
mands that instruct the execution of the LC-3 instructions.
By design, these commands are similar to the “step”, “next”,
and “continue” commands available in most debuggers. The
second module, the execution module, simulates the execution
of LC-3 instructions.

We upgraded both modules with reverse execution func-

tionality and documented the changes for students in a new
LC-3 tool manual (provided as supplemental material). For the
execution module, we added recording of state changes caused
by each instruction’s execution. An LC-3 instruction causes
at most four registers and one memory location to change.
We record the original values and the address of the changed
memory location (if any) when executing an instruction. Each
of these sets of changes is small and suffices to revert the effect
of the execution step. The recording cache is implemented as
a cyclic-array with enough space for all reasonable student
codes.

In the user interface module, we added a new category
of reverse execution commands. For every forward execution
command, such as “step” and “continue,” we implemented a
reverse version, such as “rstep” (reverse step) and “rcontinue”
(reverse continue). The semantics of each new command were
selected carefully to be symmetric with the forward execution
commands. For example, just as “finish” executes through the
RET instruction at the end of the current subroutine and returns
to the caller, “rfinish” executes in reverse back to the call
site that entered the current subroutine. The LC-3 simulator
also has a graphical interface version, in which simulator
commands appear as buttons. We also upgraded this interface
to include command buttons for reverse execution.

After finishing the implementation, we were pleased to real-
ize that our extension can also simplify grading procedures. In
particular, some information is lost when a program executes
to completion in the simulator, making it difficult to test that
information. For example, our SUBROUTINES assignment tests
students’ understanding of caller- and callee-saved registers,
and register values are checked as part of grading. Doing so
in certain cases requires asking students to add specific labels
to their code so that grading scripts can check register values
after setting a breakpoint at the labels. If a student fails to
include the label, or puts the label in the wrong place, staff
must fall back on time-consuming manual grading (with a
minor penalty for the student). Using reverse execution, we
can simply back out of the changes made when the student
program terminates, revealing the final register values left in
place by the student’s code.

The LC-3 tools provided with the textbook assume the
availability of a environments that novice programmers may
not yet have learned to use, such as Unix or Cygwin. To make
the tools more accessible to our students, we explored the
automatic translation of these programs into JavaScript and
WebAssembly for use through a web browser. We made use
of Emscripten [7] to do so. We started by translating the LC-3
assembler and simulator into JavaScript modules, enabling our
system to manage their use and execution lifetime. We then
replaced the standard Unix filesystem used in the tools with
an in-memory filesystem, adding import and export commands
to the web interface so that instructors (and, eventually, our
KLC3 feedback system) can populate the filesystem with a
predefined set of files. Finally, we implemented a modern web
interface to the tools to enable students to make use of them
without the need to install a Unix-like platform and then to



Fig. 7. Queueing delay for all Fall 2020 code samples.

Fig. 8. KLC3 analysis time for the 3188 samples from Fall 2020 that
assemble. We set a time limit of 5 minutes (300 seconds).

download and build the tools themselves. Supporting this inter-
face from the original C code required a few modifications, as
the textbook’s GUI tool is based on Tcl/Tk and communicates
through pipes with the simulator.

VIII. FEEDBACK TIMING

Our goal is to provide feedback on each student submission
within 5 minutes. The time required from a student’s point of
view includes not only analysis by KLC3, but also queueing
delays in the job dispatcher and other system components.
Failures and downtime also contribute to perceived delay, and
while the prototype deployed in Fall 2020 did suffer from
several outages, most of the bugs have been tracked down and
eliminated, leaving the system reasonably stable.

We examined queueing time as recorded in our logs for
all submissions in the Fall 2020 semester to produce the
histogram in Fig. 7. The vertical scale is logarithmic, and
the distribution is dominated by delays of 10 seconds or less.
Based on this data, we believe that our virtual server with
four processors and 8 GB of DRAM more than suffices for
a class of 100 students. While we expected more significant
delays near deadlines, in fact the value of the feedback seems
to have convinced students to work earlier, thus spacing out
their submissions in a way that enabled them to digest and act
on KLC3 feedback reports.

Looking forward, in Fig. 8 we show the distribution of
KLC3 analysis times using all KLC3 optimizations currently
implemented for the full set of 3188 samples that assemble
(the remaining 360 require a negligible amount of time to
determine that assembly fails). The input spaces are defined to
be general enough to fully explore student code samples, and
are substantially larger than those used during the Fall 2020
semester. For these data, we set a time limit of 5 minutes on
KLC3, leading to timeouts for 130 (4.08%) samples. For each
sample that timed out, however, KLC3 reported issues.

IX. DISCUSSION

A. Survey Results

As the assembly assignments occupy only about the first
third of the semester, ample time remained to survey students
anonymously on their opinions about the tools. Roughly a
quarter of the students answered the survey.

Few analytic features of our VSCode extension were ready
in time for students, and our distribution method was pri-
vate, requiring manual updates. Nevertheless, roughly half of
respondents had used our VSCode and our extension rather
than other editors to write their programs, and 80% of those
users found the extension helpful. As described earlier, we
have since extended both the syntactic and static analyses
and have added style-specific features such as identification
of unrolled loops, which we only realized were a major issue
after analyzing student codes more carefully.

Survey respondents generally found KLC3 feedback to be
useful in identifying and understanding their bugs, particularly
when bugs were subtle. One student mentioned, for example,
that KLC3, “...reminded me of an extreme case that I would
otherwise neglect.” As many bugs occur for corner cases,
helping students to think more carefully about their programs
is also a positive outcome. We were also surprised by student
comments on the flow charts (visualizations of control flow)
produced automatically for their code by KLC3. These were
creating as a debugging aid for us, to help us to understand
student code, but the students themselves also found them
useful in identifying differences between the intended and
actual control flow. We hadn’t expected novice programmers
to be able to make use of them, but the class does define and
encourage the use of flow charts in understanding programs,
and several respondents commented positively about their
inclusion in the KLC3 reports.

Two-thirds of respondents made use of our new browser-
based interface to the assembler and simulator. However, when
making use of the KLC3 reports to debug their code, students
preferred to use the traditional simulation and execution tools,
perhaps because of the lack of scripting support in the browser
interface at the time. We have rectified that lack, and plan to
enable KLC3 reports to be pulled directly into the browser
along with the scripts needed to reproduce any specific failure.

Although support for reverse debugging was available only
in time for the third assignment, DFS, half of the students
made use of it in completing that assignment. We were
pleasantly surprised by this number and expect more students



and instructors to find the functionality useful. Although the
idea has been around for decades [11], and reverse debugging
is supported in open source debuggers such as GDB, it is
turned off by default for performance reasons.

The survey also produced a number of interesting com-
ments. First, although we had already kept response times
from the server to minutes, students still wanted faster results.
Some of this attitude may arise from instances in which
our prototype system was unavailable, sometimes for several
hours. However, as illustrated in Sec. VI, we have also
significantly improved the time required for analysis since
the class deployment. Second, although we implemented per-
student regression testing and rate-limited new submissions
to deter students from making guesses about their programs,
students did seem to rely on KLC3 for finding bugs rather
than developing their own tests, going so far as to express
surprise when the tool (with a limited input space) missed
bugs that showed up during grading. About half of the respon-
dents admitted to relying completely on KLC3 for identifying
bugs. Philosophically, providing more definitive guidance in
an introductory class may be acceptable. Alternatively, by
restricting the input space used by KLC3, one can leave certain
aspects of testing to the students themselves. Either approach is
easy to define and to use based on the input scripting language
developed for KLC3.

B. Comparison with Samples from Fall 2018

To understand the effect of our system on student’s ability
to produce correct code, we compare code samples from 2020
with those produced by students in the Fall 2018 offering
of the course, before the development of our tools. Many
aspects of the two courses were the same: the same instructor
presented the same material (albeit in person in 2018, rather
than over Zoom as in 2020), and the assignments were nearly
identical, with slight modifications to the ordering of inputs,
the meanings of specific bits, and the exact output format
required. As noted in Sec. III, the differences in assignments
may introduce some difference in behavior, as might the
differences in the student populations and the TAs.

For the Fall 2020 samples, we extracted the first and the last
commits that assemble from each student’s commit sequence
of SUBROUTINES and DFS samples, then computed the frac-
tions on which KLC3 reports any memory-related warnings
(such as accessing uninitialized memory) or any error (such
as incorrect output or timeout). Results are presented in Fig. 9
using blue triangles to indicate the percentage of students with
each type of issue. Generally, student code improved from first
to last commit, as expected.

In Fall 2018, students submitted their code once, after they
had finished testing and debugging it. For comparison, we
adjusted the symbolic input spaces to match the specification
changes and executed KLC3 on each of these submissions.
The orange lines in Fig. 9 show the percentage of student
codes exhibiting each type of issue.

In the SUBROUTINES assignment, student subroutines were
required to preserve the values of most registers. A code

Fig. 9. Percentage of student code samples on which KLC3 reports warnings
or errors. Samples that fail to assemble are excluded.

fragment provided with the assignment (in both semesters)
tested one register’s value across a subroutine call to show
students how such testing could be accomplished. To test their
code, students needed to adapt that code to the other registers.
In Fall 2018, this code fragment was the only method provided
to help students test their programs, yet 19.28% of the students
did not make use of the test provided, as shown in the top-left
plot in Fig. 9. In Fall 2020, students also received feedback
about incorrectly modified register values from KLC3. The
fraction of the first commits that assemble from Fall 2020 with
incorrectly modified registers is 30.21%, higher than that of
Fall 2018, while the fraction of the last commits that assemble
is much lower, only 1.04%.

The higher initial rate of errors in 2020 may indicate
that students preferred the feedback system over performing
their own testing, even in the early stages of development.
Alternatively, since KLC3 executed automatically whenever
students committed their code, students may have simply
wanted to preserve a copy of their work before beginning to
test. Regardless, the differences in the final submission show
that the targeted feedback and test cases were more effective
in identifying problems in their code as they made progress
on testing and debugging. A similar pattern is observed for
the other errors of SUBROUTINES and the errors of DFS.

Memory warnings show somewhat different behavior. For
these, the rates among students in the Fall 2020 class for both
assignments were lower in their first commits that assemble
than in the final submissions (again, our only data point) for
the students in 2018. We believe that this behavior results
from changes in the assignment specifications: while students
are never encouraged to use memory outside of the specific re-
gions defined in the specifications, the 2018 specifications did
not explicitly forbid such use, whereas the 2020 specifications
did. This finding shows the potential for improving pedagogy
with insights from students’ submissions.

Although the fractions of erroneous submissions decrease,
the overall impact of automatic feedback on student learning
remains an open area for further investigation. Ideally, such
impact should be evaluated through longitudinal assessment,
in which students who have learned with and without such
feedback are compared in terms of their proficiency in later



classes or even in their careers. We plan to deploy the system
again in near future to further investigate this topic.

C. Comparison with Web-CAT

Many universities now use Web-CAT [1] rather than simple
execution of test vectors in programming classes. The key idea
behind Web-CAT is to have students generate their own tests,
in a manner similar to Test-Driven Development. Like KLC3,
Web-CAT relies on the availability of a gold version of an
assignment—a solution.

Students are then evaluated based on a combination of the
validity and correctness of their tests along with coverage of
the gold version. In particular, validity evaluates the student-
provided tests against the gold version of the code, while
correctness evaluates them against the student version of the
code. Coverage measures the degree to which a student’s tests
fully exercise the gold version, and can in practice be based
on code coverage, branch coverage, or even on something like
a full test set from symbolic execution.

Web-CAT’s focus on encouraging and rewarding test de-
velopment by students is an interesting and valid goal, but
we believe that some of the more subtle errors and variations
introduced by novice programmers are likely to be missed by
such a system. For example, we note that roughly a third of
students’ final submissions of DFS still suffered from some
type of memory error in Fall 2020 (see Fig. 9). While such
errors may effect output, often they have no direct impact
on program behavior. Some such errors are akin to out-of-
bounds array accesses in languages like C, which may or may
not cause a program to produce incorrect results. Often, the
behavior ends up depending on the compiler, operating system,
or even on the ISA. In the case of LC-3 code, for example, the
simulator initializes most memory locations to 0, so student
code with erroneous behavior often works fine, or works the
first time, but not the second time, and so forth.

In our experience, and also as reported in [4] for C pro-
grams, using gold code coverage as the basis for student code
evaluation is also limiting. Test generation using KLC3 with a
symbolic input space on the gold program typically generates
a superset of the tests required for code or branch coverage,
but even those tests do not uncover all bugs in student code,
even when combined with a similar set generated by KLC3
with the student code itself. In particular, while all possible
code paths are covered by the tests generated by KLC3, the
actual tests consist of specific input vectors, and the vectors
that differentiate the student and gold versions may be missed.
Equivalence checking, as described in this paper (and by the
earlier work on C) specifically targets such vectors, and is thus
better able to identify subtle behavioral differences.

Nevertheless, we recognize that Web-CAT may be better
in avoiding the tendency of students to rely on the feedback
system for testing. In the future, it may be interesting to
combine the two approaches, using something like Web-CAT
to provide initial feedback, but switching to KLC3 after
students have surpassed some threshold with their own tests.

D. Alternative Designs

Early in our project, we considered an alternative approach
to handling LC-3 programs with KLEE: translating LC-3 code
to C (specifically, to an LC-3 virtual machine implemented
in C), then compiling to LLVM IR and using KLEE. After
some initial research, we decided on the more direct approach
described in this paper. The LC-3 ISA differs from C in several
noteworthy ways: LC-3 programs operate directly on registers
and make explicit accesses to the 16-bit addressable memory,
while registers and addresses are managed by compilers and
hidden from C programmers. Also, LC-3 assembly can contain
direct jumps to arbitrary memory locations (using JMP or
JSRR), while C offers only the limited goto statement.
Finally, subroutines calls in C rely on the concept of stack
frames, which are not explicit in LC-3. We feel that the
additional indirection implied by mapping LC-3 code through
a virtual machine and then through a C compiler to LLVM
would add too much overhead to analyzing the relatively
simple programs produced by our students. The complexity of
ensuring consistent behavior as well as inverting the mapping
to explain issues found in the final version clearly to students
in terms of their original code is also somewhat daunting.

E. Pushing Optimizations into KLEE

The authors of KLEE have also noted the possible need
for an IndependentElementSet cache as a comment in the
source code. To investigate the value for C programs, we
translated one author’s DFS solution into C, compiled it using
Clang (-O2), and executed it with KLEE on the same symbolic
input space. In that form, the code required construction of
only 3.01× 106 IndependentElementSets, 73.1× fewer than
did the LC-3 version. The gap may be due to differences
between LC-3 and the LLVM IR: LC-3 lacks multiplication
instructions, comparison instructions (use condition codes
instead), and other features. Consequently, more LC-3 in-
structions are needed to implement the same functionality.
Compiler optimizations also reduce the number of instructions.
The average number of LC-3 instructions executed by KLC3
for 909 DFS samples is 2.41× 108, while KLEE executed
only 5.05× 106 LLVM IR instructions for the C version. The
impact of the cache is therefore less pronounced, although we
believe that the cache may be useful in analyzing certain types
of C programs.

X. CONCLUSION

Considering both student feedback and our success in using
the system to deliver feedback based on symbolic evaluation of
student submissions within our goal of 5 minutes, we plan to
make continued use of these tools in future classes and to make
them available to others using LC-3 to teach programming.
Towards that end, we provide a replication package [10] with
source code and manuals for all components, as well as the
assignments and several sample solutions for each. Detailed
implementations and discussions of the tools can also be found
in the authors’ theses [12][13][14][15].
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