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Abstract. Fault handling is the timely and crash-free response to critical changes
in a system’s operating characteristics, such as rapid temperature increases, or
electrical shorts. In a typical computer system, it is the board management con-
troller’s job to correctly respond to such anomalous situations.
We develop an Isabelle/HOL model of a state machine for fault handling and
define semantics for correctness of this procedure. Additionally, we formalize a
notion of refinement that allows us to prove the correctness of implementations
of this state machine. We also provide the first verified implementation of a C-
based fault handler for board management controllers. Our implementation and
the accompanying proofs are open-sourced and available online.
Furthermore, we successfully deploy our verified fault handler on top of the seL4
microkernel and alongside a production-grade, open source software stack widely
deployed today, applying the cyber-retrofit approach to securing board manage-
ment controllers in practice. The implementation and proof effort required is
moderate, and our efforts indicate that already a small team of a handful of peo-
ple can significantly raise the level of assurance of a modern, highly privileged
software system.

Keywords: fault handling · applied formal methods · low-level systems verifica-
tion · board management controllers

1 Introduction

Board management controllers (BMCs) are the hidden centerpieces of modern com-
puters, and present a highly privileged interface to the lowest-level bits of hardware,
such as clock, power, and fan control. Software running on the BMC is responsible
for the safe operation of the platform, and often also for remote management. BMCs
are critical pieces of hardware that must run correctly, otherwise the hardware can be
irreversibly damaged.

Despite this, BMCs today are not built to be trustworthy and present a good candi-
date for the cyber-retrofit approach [24] to building high-assurance systems, by identi-
fying critical functionality that can be extracted from a legacy system and verified or
otherwise improved, while leaving the rest of the functionality untouched.

We apply the cyber-retrofit approach to the fault handling procedure of a BMC
firmware image based on OpenBMC and Linux. Fault handling is the process of inter-
preting and responding to faults: hardware-generated events corresponding to a change
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in the external system: over-temperature, over-current, under-voltage, and so on. This
is a critical function of the BMC, and it must always run reliably. We verify the fault
handling implementation written in C against an abstract specification written in Is-
abelle/HOL, proving that our implementation is functionally correct.

Our definition of functional correctness states that any received fault will be handled
in bounded time and, furthermore, that occurrence of a critical fault will eventually lead
to a system shutdown. Our proof uses established tools for verification of C programs in
Isabelle/HOL, developed for the verification of the seL4 microkernel, but applies them
in a new context.

Furthermore, we have deployed our implementation on a real hardware platform:
a server-class research computer we describe in section 7. The fault handler runs as a
component on the seL4 [23] formally verified microkernel, while the remaining legacy
OpenBMC/Linux firmware runs isolated within a virtual machine (VM). Our source
code and the associated proofs are available online on Zenodo [16].

2 Background

Most of the integrated circuits (ICs) in a modern server are connected by one or more
I2C buses [35], which provide a simple, two-wire protocol for transferring data between
ICs and bus controllers. The System Management Bus (SMBus) [33] and Power Man-
agement Bus (PMBus) [38] standards define data transfer operations and semantics on
top of the I2C protocol, along with a procedure to report faults to bus controllers. The
ICs which are networked with I2C include the voltage regulators and clock distributors
which provide power and clock to the rest of the platform.

The I2C bus controllers are typically part of the BMC, a small computer which thus
controls all aspects of the rest of the machine, including CPU and RAM. BMCs are
also often network-facing, since remote management capabilities like console access
and reset are indispensable for modern platform management.

A fault event is raised by an IC to signal a (possibly critical) change in operat-
ing characteristics, e.g. exceeding specified temperature, current, or voltage limits, and
is signaled to the BMC generating an interrupt. The BMC must then identify which
component faulted, what occurred, and what action must be taken. Figure 1 shows a
simplified example of a server design, representative of the machine in section 7, with
I2C buses and the fault-handling signal path.

The faulting IC may itself take action. An over-voltage fault on a voltage controller,
for example, might cause it to disable its output automatically, since I2C communication
between the IC and the BMC is too slow to safely react to these real-time events. Once a
fault happens, however, the BMC must take appropriate action, for example increasing
fan speed in response to a temperature fault. Ultimately, after a fault the BMC must
decide whether to shut down the platform to prevent damage to critical components.

Ensuring BMCs are actually trustworthy is thus of critical importance. However,
they are not built for high assurance [36]. BMCs are typically provided by the moth-
erboard manufacturer as proprietary, closed-source components, making them difficult
to inspect or modify. As a result, new exploits appear each year [9,10,11,12,13,14].
State-of-the-art BMCs today use open-source software like u-bmc [5] or OpenBMC
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Fig. 1: Overview of the fault handling path on a typical server. I2C-connected ICs gen-
erate faults by pulling the SMBus alert lines connected to the BMC, raising an interrupt.

[1], based on an embedded Linux kernel. These systems provide no rigorous guaran-
tees, and the fact that the software must be customized for each board further reduces
reliability and trustworthiness.

We improve on the state of the art by isolating a critical component, namely fault
handling, from our system, providing an implementation with provably correct opera-
tion, and sandboxing the rest of the legacy system.

3 Related work

The cyber-retrofit approach [24] to incremental verification of mixed-criticality high-
assurance systems was described by the seL4 [23] team in the context of the SMACCM
component [7] of the larger DARPA HACMS project. The initial application was the
isolation of an unmanned drone’s mission-critical real-time flight-control software from
a larger, untrusted Linux virtual machine providing lower-criticality functions. The spe-
cific approach has since been replicated in other aerial platforms [15], and falls within
the wider category of static partitioning approaches [28] to building mixed-criticality
systems [4], and has been cited as a reference point for future high-assurance systems
for spaceflight [8]. We apply the technique to high-assurance firmware development in
response to the shared characteristic of a mixed-criticality composition of safety-critical
functions within a larger existing low-assurance code base.

Our proofs cover a subset of the guarantees established as part of the DARPA
HACMS project. Compared to the work done by the seL4 team, our verification is
limited to one component, thus we are not concerned with properties such as informa-
tion flow control. We construct specifications for calls to inter-component interfaces,
however we do not prove any properties of their implementations.

BMC software stacks have not been widely studied in the literature, and indeed it
has been only a few years since open-source BMC software has reached significant
adoption [17]. Other approaches for verifying low-level C code bases have been tried
before, for example in sensor networks [3] using bounded model checking, or industrial
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theorem faults_are_eventually_handled:
defines tr :: "c_state stream"
shows "alw step −→

weak_scheduling_fairness −→
alw (pending_fault f −→ ev (not (pending_fault f))) tr"

theorem critical_faults_eventually_lead_to_power_down:
defines f :: c_fault and tr :: "c_state stream"
assumes "is_critical_fault f"
shows "alw step −→

weak_scheduling_fairness −→
alw (pending_fault f −→ ev powered_down) tr"

Listing 1: Top level Isabelle/HOL fault handler correctness theorems.

control applications [19] using deductive verification tools. Verification is usually done
in full on the annotated source code, in contrast to our incremental approach. The scope
of verification also varies greatly, from crash-freedom to functional verification.

4 The top-level result

We prove three core results of the overall fault-handling implementation. First, to dis-
charge the well-formedness assumptions of the StrictC dialect we need to show that the
C implementation is crash-free, terminates, and has the same core memory-safety and
well-defined-behavior properties as the seL4 kernel itself. We then extend this with the
two application-specific properties in listing 1.

These express that first, any fault that is signaled will eventually be handled and that
second, any critical fault will eventually cause the system to be shut down. These are
expressed as LTL (linear temporal logic) [32] formulae over the top-level state machine
model of the system. The syntax is that of the existing LTL formalization available in
Isabelle’s HOL Library [30]. They correspond to the following formulae in standard
LTL:

wsf =⇒ □(pending_fault f =⇒ ♢(¬pending_fault f ))
wsf =⇒ is_critical_fault f =⇒ □(pending_fault f =⇒ ♢ powered_down)

“Assuming that weak scheduling fairness holds, it is always the case that if fault f
is pending now, eventually it is not (and has thus been handled), and that if the fault is
critical the system is eventually in a powered-down state.”

Both statements make an explicit weak fairness assumption wsf. Lamport’s defini-
tion of weak fairness for some transition T states that

weak_fairness(T ) ≡ □♢¬enabled(T ) ∨ □♢ step(T )

The transitions of the fault handling state machine are always enabled, and thus the
weak fairness assumption simplifies to:

wsf ≡ □♢ consume_faults ∧ □♢ check_shutdown
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definition enable_source where "enable_source s t = ..."
definition disable_source where "disable_source s t = ..."
definition receive_faults where "receive_faults s t = ..."

definition consume_faults :: "(’s, ’f) state rel" where
"consume_faults s t ≡ t = sL
faults := [],
shutdown_triggered := shutdown_triggered s

∨ (list_ex is_critical_fault (faults s))
M"

definition check_shutdown where "check_shutdown = ..."

definition step :: "(’s, ’f) state rel" where
"step s t ≡
s = t ∨ enable_source s t ∨ disable_source s t

∨ receive_faults s t ∨ consume_faults s t
∨ check_shutdown s t"

Listing 2: The abstract state machine.

“At any point in time, both the fault and shutdown handlers will be called (strictly,
be the current task) in a finite number of steps.”

This liveness assumption is carried explicitly in both top-level correctness state-
ments and expresses a requirement on the scheduler configuration in any deployment.
This may be discharged by, for example, employing the strict real-time MCS sched-
uler [27] now undergoing verification.

By showing that the C implementation both refines the abstract state-machine model
and separately preserves these liveness properties, we establish that they hold for the
final deployed fault handler. We integrate this fault handler with the production-grade
OpenBMC [1] software stack, a Linux distribution widely used for commercial BMCs.
The fault handler comprises a set of native seL4 tasks running alongside the rest of the
OpenBMC stack which is isolated within a virtual machine.

This is an application of the cyber-retrofit approach [24]. This technique increases
the assurance of a software system by extracting a small, trusted part, comprehensively
verifying it, and recombining it with the unmodified base system without compromis-
ing either the new formal guarantees or the functionality of the unverified component.
Despite the presence of untrusted and unverified code in OpenBMC, we can appeal to
the verified security properties of the seL4 microkernel to establish that these verified
fault-handling guarantees hold even if the network-accessible OpenBMC component is
completely compromised.
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definition weak_scheduling_fairness :: "(’s, ’f) state trace ⇒ bool" where
"weak_scheduling_fairness ≡ alw (ev consume_faults) ∧

alw (ev check_shutdown)"

Listing 3: Isabelle/HOL definition of the weak scheduling fairness assumption; it is a
straightforward translation of the previous LTL formula defining wsf.

record (’s, ’f) state =
enabled_sources :: "’s set" faults :: "’f list"
shutdown_triggered :: "bool" power_up :: "bool"

locale fault_handling_assumptions = fixes
is_critical_fault :: "’f ⇒ bool" and
max_faults :: "nat"

Listing 4: Fault handler state and ancillary assumptions.

5 The abstract specification

Our top-level model is the nondeterministic state machine defined in listing 2 with
next-step relation step. This expresses the nondeterministic composition of steps of the
handler (enable_source, disable_source, consume_faults, check_shutdown),
steps of the environment (receive_faults), and idle transitions (s = t). The defi-
nition of consume_faults is expanded to illustrate the abstract implementation of a
component. Here the list of active faults in the prior state is cleared (consumed), and
the shutdown flag is set if at least one of those faults was critical or it was already set.

While the model defines a set of possible next states (the image of the relation), any
trace of the implementation is a definite sequence of states lying pairwise in the step
relation.

Which trace actually executes is a property of the OS scheduler and any other non-
determinism refined by the final implementation. The OS scheduler and environmental
nondeterminism determine the order in which steps are executed to form the final trace.
This is abstracted in the model and the only property of the trace we rely on is ex-
pressed in the Isabelle/HOL formulation of the weak scheduling fairness assumption in
listing 3.

The abstract state over which the machine operates is defined in listing 4. The types
’s and ’f are parameters and represent a set of fault sources and fault types, respec-
tively. Fault sources are disabled, in which case the associated fault values will not be
signaled, if they are not in the set of enabled_sources. The list of faults records all
as-yet-unhandled faults in order of occurrence. The flag shutdown_triggered records
whether a shutdown has been initiated (but not necessarily completed), and power_up
whether the system is currently powered. Once the shutdown completes, power_up
becomes false.

A locale is an Isabelle mechanism to express a named bundle of definitions and
assumptions [22]. The fault_handling_assumptions locale assumes the existence
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definition refines ::
"(’c ⇒ ’a) ⇒ ’a rel ⇒ ’c rel ⇒ bool" where
"refines lift an cn ≡
(∀s t. cn s t −→ an (lift s) (lift t))"

Listing 5: Refinement with respect to a lifting function

definition sufficiently_live ::
"(’c ⇒ ’a) ⇒ (’c stream ⇒ bool) ⇒ bool"

where
"sufficiently_live lift LP ≡
∀tr. LP tr −→ weak_scheduling_fairness (smap lift tr)"

definition liveness_prop ::
"((’s,’f) model stream ⇒ bool) ⇒ bool"

where
"∀tr. (alw step’ −→ weak_scheduling_fairness −→ P) tr"

lemma transfer_liveness_prop:
assumes
"refines lift step cn"
"sufficiently_live lift LP"
"liveness_prop P"

shows
"(alw (lift cn) −→ LP −→ P o (smap lift)) tr"

Listing 6: Liveness preservation across refinement

of an otherwise-undefined predicate classifying some faults as critical (requiring shut-
down), and that there exists some bound (max_faults) on the number of faults that
can occur before the handler executes.

We show that the C implementation of the fault handler, as imported into Isabelle
using the StrictC tool chain, is a refinement [26] of this abstract state machine. This
relation is defined precisely in listing 5. The concrete system cn is a refinement of the
abstract system an if, given a lifting function from concrete to abstract states, wherever
a concrete transition between two states exists, an abstract transition exists between
the corresponding lifted states. Informally, this expresses that “Every behavior of the
(concrete) implementation is permitted by the (abstract) specification.”.

Refinement does not generally preserve liveness. An implementation which does
nothing at all trivially refines any specification. More generally it only requires that the
steps of the implementation are some subset of those of the specification, but not that
any particular step actually happens. We thus extend our definition as shown in listing 6
to express that a class of liveness properties (those that depend on weak scheduling
fairness) are in fact preserved by our refinement.
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A sufficiently-live property on the implementation is one which if it holds for a con-
crete trace, weak scheduling fairness holds for the corresponding lifted abstract trace. A
liveness property (in this context) is one which holds in any (abstract) state where weak
scheduling fairness holds.

The transfer lemma establishes that given a sufficiently-live property for the con-
crete system, any liveness property of the abstract system also holds for the concrete
when interpreted through the lifting function. The property may be transferred from
the abstract states to their pre-images under the lifting function. Both of the top-level
formulae of listing 1 satisfy this definition of liveness, and are thus preserved by the
refinement.

6 The proof

Having defined an abstract model for fault handling, we next implement a fault handler
in C as a component on top of the seL4 microkernel [23] and its component framework
CAmkES [25]. We provide a behavioral proof of each of the fault handler functions
in the form of Hoare triples, as well as total correctness (i.e. termination) proofs for
invariant preservation. A brief schematic of the whole code-to-proof pipeline from the
C source to the top-level result is shown in fig. 2.

.c .thy .thy

(Strict-)C
source

Simpl AST Monadic
specifications

CParser AutoCorres

.thy

.thy

Behavior proofs,
def. of concrete
state machine

.thy

Top-level
result

Abstract model

Fig. 2: Overview of the proof pipeline, from C code to final result. The dotted arrow
denotes an unverified step, while the solid arrows are formally proven in Isabelle/HOL.
Blue and orange distinguish automatic and manual proofs, respectively.

Our code is written in StrictC, a dialect of the C language developed by Schirmer [34].
As the name suggests, StrictC disallows use of some C constructs, including but not
limited to: goto statements, assignments within expressions, fall-through cases, type
unions, and C99’s bool. We translate the StrictC program to the Simpl language us-
ing an existing, ML-based parser, initially developed for use in the verification of the
seL4 microkernel. Simpl is a sequential, imperative programming language with formal
semantics defined in Isabelle/HOL. Note that this translation is unverified; there is no
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lemma inv_no_fail: "{inv} m {inv}!"
lemma executable: "executable_specification m"
lemma refines_model: "{s} m {model.step (lift_state s) (lift_state s’)}"

Listing 7: Proof obligations for an AutoCorres-generated monadic specification m

formal proof that the semantics of the generated Simpl program matches the semantics
of the StrictC program.

The Simpl translation of our C code is then fed into AutoCorres, which was devel-
oped by Greenaway et al. [18]. AutoCorres translates the Simpl programs to a monadic
specification over a non-deterministic state monad with failure, including an automati-
cally derived proof that these specifications refined the Simpl programs they were gen-
erated from.

The monadic specifications generated by AutoCorres contain statements that relate
to the well-formedness of the underlying StrictC program: accessed pointers are always
valid, satisfy bounds checks when indexing arrays, and so on. Otherwise, the program
fails, and the resulting state will have a failure flag set. Showing that the monadic pro-
grams do not fail is a significant part of our work. On the other hand, a monadic specifi-
cation could also be trivial, returning an empty set of resulting states. This would imply
that said specification cannot be executed. Fortunately, we can automatically prove non-
triviality for almost all of our specifications, and complete the remaining cases by hand.

Our main proof effort pertains to proving Hoare triples about the behavior of these
monadic specifications. From these behavioral predicates, we construct a state machine,
where the state chosen corresponds to the state of the monadic translation of StrictC pro-
gram. We prove that each monadic specification, translated from its original function,
refines a corresponding transition in the abstract state machine. Finally, we assume the
existence of a weakly fair scheduler for some transitions, in order to meet the liveness
assumptions made about our state machine.

Plugging our refinement results, proven on the abstract machine, together with the
concrete behavior proved on our monadic translations, allows us to prove that the con-
crete machine satisfies the conditions for fault handling identified in section 4. Adding
the refinement result generated by AutoCorres relates the concrete state machine’s be-
havior down to the StrictC code.

6.1 Reasoning about the generated monadic specifications

Recall that the monadic specifications generated by AutoCorres are non-deterministic
and allow failure, thus we have to prove that for each specification, it never fails and
always produces at least one resulting state. Thus, after translating a C function f to a
monadic specification m, we need to prove three things of m: it terminates and does not
fail, it is executable, and it refines the behavior of an abstract transition. We prove each
of these statements individually, later combining them to a full correctness statement.
A brief overview of the proof goals can be seen in listing 7.

In order to prove that the specification does not fail, we need to show that any
pointers and arrays accessed/indexed by m are valid. To this end, we define a global
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definition "valid_num_faults g ≡ num_faults g ≤ max_faults"
definition "valid_ptrs g ≡

is_valid_w8 addr_ptr ∧
is_valid_w16 status_word_ptr ∧
(* ... *)"

definition "inv s ≡ valid_ptrs s ∧ valid_num_faults s"
definition "init s ≡ valid_ptrs s ∧ num_faults s = 0 ∧ ..."
lemma init_impl_invariant: "init s ==> inv s" (* ... *)

Listing 8: The main fault handler invariant for the concrete implementation.

invariant inv that is preserved by every monadic program, and it does not cause the
program to fail. Listing 8 shows an excerpt of our invariant definition.

Proving that the pointer invariants are preserved is straightforward, since our point-
ers are valid initially, and are never modified. Proving that the number of faults received
stays valid is slightly more involved, since we use num_faults as an index when mod-
ifying the max_faults-sized buffer of faults. We utilize lemmas for reasoning about
word-sized arithmetic in these cases. Most of the proofs can be discharged by the wp
tool.

Next, in order to prove that a monadic specification is non-trivial, we have to prove
that the set of result states it produces is non-empty. However, doing so would require
us to duplicate all proofs we have already done about total correctness of the invariant.
Therefore, we prove an equivalent statement, which allows us to re-use our invariant
proofs: we prove that each monadic specification also fails when it produces an empty
set of output states. Since we have already proven non-failure under the invariant, this
is sufficient to prove executability as well. This property can be derived automatically
in almost all cases.

Finally, to prove that our specification refines our abstract model, we define a lift-
ing function, which lifts our concrete state to the abstract model state and is shown in
listing 9. The lift_state function is responsible for translating the data representa-
tion from C arrays and integers to the richer type system of our state machine using
richer types such as lists and sets. Concretely, the faults list of our abstracted state
is represented as two variables in our C code: a statically-sized array of faults, and an
integer recording the number of faults currently buffered. The set of enabled sources is
related to the non-zero entries of underlying C array. The boolean field holding whether
a shutdown was triggered is represented as an integer in the underlying C code1, with
zero corresponding to false, and any non-zero value corresponding to true. Finally, the
abstract machine is considered “powered up” when the main power supply is switched
on. Other powered components, such as the passive power rail that powers the BMC
itself are irrelevant.

To complete our refinement proof, we need to prove that each monadic specification
modifies the state in a way consistent with the abstract model. These proofs boil down
to proving that some fields have been modified in a specific way, while leaving most of

1 This is due to the StrictC parser being unable to parse the stdbool.h header.



Verified fault handling for modern board management controllers 11

definition
lift_state :: "c_state ⇒ (fault_line, fault) Model.state"
where "lift_state g = L
enabled_sources = {s. faults_enabled g.[unat s] , 0},
faults = let n = unat (num_faults g)

in take n (list_array (faults g),
shutdown_triggered = shutdown_triggered g , 0,
power_up = psu_up (power_state g)

M"

Listing 9: Definition of our lifting function from c_state to abstract model state

the other fields untouched. Take the receive_fault transition, for example: we prove
that most of the global state remains unchanged, while the number of received faults is
increased, and new faults are correctly buffered, keeping the old buffer intact. Thus, we
can decompose our proofs about the whole state by considering each field separately,
leveraging wp’s proof automation to combine the sub-proofs for us.

An example of the individual proof goals for a function receiving faults is shown
in listing 10. Note that in a system with multiple fault sources, there might multiple
functions that receive faults, and each of them have to be proven correct separately.
Generally, we divide the proofs in two parts, depending on whether we aim to prove
a framing condition about a particular field, or whether we prove something about the
correct modification of some state.

Many of our proof obligations are, in fact, such framing conditions. Those can of-
ten be proven automatically using some existing tooling that “crunches” through these
(often repetitive) proofs. It was even able to deal with simple loops, which alleviated a
non-trivial amount of proof effort. In more complicated cases, however, we had to write
proofs by hand.

The behavioral proofs seldom worked out-of-the-box. In order to get those proofs
down to a combination of applying the wp tactic and appropriate simplifier invocations,
we introduce and prove other Hoare triples or simplification rules. Sometimes, the form
of required rules could be straightforwardly derived from the proof state, indicating
where the weakest-precondition tactic was “stuck”. However, in other cases the proof
state was unhelpful in determining a statement that could be useful to the automated
tactics, and required us to carefully construct a proof by hand.

As already mentioned, we rely heavily on the weakest precondition tactic wp, as dis-
tributed with the nondeterministic state monad, for verification condition generation. In
practice, we found it often not necessary to find the weakest precondition, only a suffi-
ciently weak one. Supplying the tool with theorems that are not in weakest precondition
form still guarantees soundness, but completeness is lost: it might be the case that some
valid goals are not provable, and in those cases we had to re-visit some intermediate
proofs we had done. We used this fact in some of our proofs: by supplying non-weakest
preconditions, we were able to reduce the precondition’s complexity and simplify the
remaining proof. This was especially useful in statements that involved branching.
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(* Framing conditions *)
lemma receive_fault_lift_enabled:
"{%s. P (lift_enabled s)} receive_fault {%s. P (lift_enabled s)}"

lemma receive_fault_lift_shutdown:
"{%s. P (lift_shutdown s)} receive_fault {%s. P (lift_shutdown s)}"

lemma receive_fault_lift_power_up:
"{%s. P (lift_power_up s)} receive_fault {%s. P (lift_power_up s)}"

(* Precise behavior *)
lemma receive_fault_lift_faults_prefix:
"{%s. prefix a (lift_faults s)}
receive_fault
{%s. prefix a (lift_faults s)}"

lemma receive_fault_line_disabled:
"{%s. P (lift_faults s) ∧ l < lift_enabled s}
receive_fault
{%s. P (lift_faults s))}"

lemma receive_fault_combined:
"{%s’. s = s’}
receive_fault

{%s’. model.step (lift_state s) (lift_state s’)}"

Listing 10: Proof obligations split into framing and non-framing conditions.

Finally, we construct our state machine by defining a suitable initial state predicate
and transition relation, and prove that, together with the lifting function defined earlier,
this concrete state machine is a refinement of the abstract state machine introduced in
section 5, which concludes our proof.

From here on, state the liveness assumptions on the concrete state machine like we
did on the abstract state machine, and prove that it is indeed sufficient to transfer the
properties proved on our abstract state machine. This is shown in listing 11. Together
with the previously proven facts about the abstract, we achieve the main result shown
in section 4.

7 Running on real hardware

Enzian [6] is a server-class research computer built at ETH Zurich with two main chips,
a CPU and a large FPGA as a second NUMA node. The BMC is a Zynq UltraScale+
MPSoC [2], initially running Linaro Linux and a custom distribution of OpenBMC [1]
for board management.

The relevant system architecture is shown in fig. 3. Enzian uses multiple PMBuses
equipped with alert signals to communicate with the peripheral devices. We focus on
two interesting voltage regulator ICs, the IR3581 [20] and the MAX15301 [29], in
this presentation. Applying the cyber-retrofit approach, we encapsulate the Linux-based
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definition step :: "(c_state, unit) nondet_monad" where
"step ≡ skip <|> receive_fault <|> enable_faults <|> disable_faults

(* other fault lines omitted *)
<|> consume_faults <|> condition lift_shutdown shutdown skip"

theorem step_refines_model:
"model.refines lift_state model.step (run_monad step)"

definition weak_liveness :: "c_state trace ⇒ bool" where
"weak_liveness ≡ alw (ev (run_monad consume_faults’)) aand

alw (ev (run_monad check_shutdown’))"

lemma sufficiently_live_assumption: "sufficiently_live weak_liveness"

Listing 11: The main refinement theorem of our abstracted code.
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Fig. 3: System architecture.

OpenBMC in a VM over seL4 (with device pass-through) and implement the fault han-
dling code in a native seL4 process using the CAmkES component framework.

The code requires device drivers to communicate with the regulators. Unlike Linux,
limited drivers are available on seL4. For ease of implementation, we use Xilinx driver
IPs on the MPSoC FPGA [2] and ported the Xilinx bare-metal drivers [40] to seL4. Cur-
rently these components are trusted, and verifying their correctness is beyond the scope
of the present work. The fault handler runs in the background; we also implemented an
interactive shell for testing. We modify the original OpenBMC to redirect commands
to those two regulators to a virtual serial port connected to the native seL4 system. The
supporting OpenBMC components include a time server and a board resetting server.

The IR3581 and MAX15301 raise alerts when temperatures exceed set values. To
simulate over-temperature alerts reliably, we set the threshold temperatures to below
room temperature. These alerts are critical faults that should lead to system shutdown.
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Fig. 4: Time spent in steps of fault handling.

The evaluation process thus consists of the following steps, performed through the
interactive shell:

1. Power up the system.
2. Read back voltage levels to ensure the system is indeed powered up.
3. Trigger alerts by lowering the threshold temperature. The fault handling code re-

ports time spent in each step to the shell.
4. Read back voltage levels to check if the system is powered down.

In step 3, the SMBus protocol [33] requires the BMC to send out a response-address
request on the I2C bus to identify the faulting device. The device then responds with its
address. This step, when receiving faults, involves relatively slow I2C communication.
The same applies to the step of shutting down the system. Time spent during I2C com-
munication is not a focus of this work. Nevertheless, we show the time of those two
steps to briefly demonstrate the end-to-end functionality of the code, while focusing on
the step of processing fault events.

For each device, we repeat the procedure 15 times. Lowering the threshold tem-
peratures results in alerts raised by the IR3581 [20] and MAX15301 [29], respectively.
Read-back voltages are machine-checked, showing that the fault handling functions as
expected. The time spent in each fault handling step is reported in fig. 4.

The fault handling time (middle) is relatively small. Handling one alert from the
MAX15301 takes only 25.6 µs on average with a standard deviation of 0.7 µs. For the
IR3581, most of the time, handling two alerts takes less than 26.5 µs. However, we
observe a few outliers that take up to 4.1 µs. We believe this is due to seL4 switching
context between the two alerts. The fault handling and shutting down processes are
connected by seL4 signals [39]. When the first alert gets handled, a signal is emitted,
which may trigger the seL4 scheduler to deschedule the fault handling code.

Nevertheless, the fault handling code functions correctly on the evaluation platform
and in a timely fashion. The outliers for the IR3581 demonstrate how the OS scheduler
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may affect the liveness of fault handling, motivating a verified mixed-criticality sched-
uler or careful design in the implementation to better match seL4’s default fixed-priority
scheduler.

8 Experience

We now briefly discuss our experience replacing the OpenBMC fault handler with our
verified implementation.

The entire project, from developing the initial implementation, specification, inte-
grating our code with virtualized OpenBMC, and proving the implementation correct
took us about 20 person-months (shared across several people). A detailed breakdown
of the individual tasks can be seen in table 1.

Task Effort

Initial seL4 port 6 mo
verified C 2 mo

Abstract model 1 mo
Full verification 7 mo
Virtualizing OpenBMC and
integration

4 mo

Total time spent 20 mo

Verified Component LoP %

Top-level statement 167 7.0
Abstract model 354 14.8
Extracting monadic
specification from C

43 1.8

Proofs about monadic
specifications

1’733 72.4

Miscellaneous 96 4.0

Total 2’393 100.0

Table 1: Overview of time and lines of proof required for the project. We do not include
the existing seL4 components we use.

In total, our efforts clock in at about 7.4k lines of C code (excluding generated files),
and 2.4k lines of Isabelle/HOL. Of those 7.5k lines of C, the verification covers about
1k lines, of which 700 lines are source code and 300 lines are headers. Unsurprisingly,
the majority of the effort is spent verifying the C code, both in time spent and the proof
length.

Verification strongly influenced the implementation during development, for a vari-
ety of reasons. On the one hand, writing code that we later verify forces us to be precise
with respect to our intended semantics, such as the consideration of what happens when
the fault buffer is full. On the other hand, the restrictions placed on us by StrictC disal-
lows some constructs that could come in handy at certain points when interacting with
hardware, such as type unions. Finally, it causes us to use language features that alter
control flow (such as continue or break within loops) only very sparingly. It is possi-
ble to reason about the specifications for such code, however we found it is often easier
to restructure the control flow.

Our proofs themselves are designed to be modular. Changes to the implementation
of one function generally have no effect on other functions, assuming we can re-use the
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same top-level specification. We took care to design our proofs such that some assump-
tions can easily be changed, such as the definition of a critical fault or the maximum
number of buffered faults.

Now that we have verified one component of a larger system, the question arises
how to compose our proof with other correctness proofs that we might be interested in
developing.

Due to limitations in the StrictC tool, we were forced to specify some C functions,
such as those that interact directly with the I2C hardware through registers. Since we
have already come up with these specifications, further proof efforts should be able to
leverage these.

However, composing our proofs with correctness proofs of other components that
would concurrently execute within the same system is much more difficult, as there is
no general method known to compose two unrelated, concurrent specifications.

9 Conclusion

We have shown that the cyber-retrofit strategy can be applied to new domains in order
to verify large-scale system. We were able to apply existing verification tooling and
techniques to develop and prove correct the fault handling implementation of a modern
BMC, while deploying the resulting artifact in production and successfully handling
faults.

The required work for writing and proving correct code is sufficiently small to allow
even small teams of students to verify non-trivial functionality, thanks to the verification
tools developed by the seL4 team [23].

There are open questions for scaling the work in order to verify larger systems.
Cross-CAmkES component verification was shown to be possible, and new approaches [31]
are being tested to verify sequential code across process boundaries. It is, however, un-
clear how concurrency fits into the picture. Approaches for verifying concurrent code
are being tried right now [21,37], and it remains to be seen how the seL4 team itself
will tackle these. We assume a sequential schedule for now.

Future work on our end includes extracting and verifying other parts of the OpenBMC
stack, and ensuring the specifications we developed for inter-component function calls.
Additionally, we are looking forward to a version of seL4 with a verified mixed-criticality
scheduler in order to formalize our liveness assumptions.
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